物理学第三版(刘克哲 张承琚)课后习题答案第十一章_第1页
物理学第三版(刘克哲 张承琚)课后习题答案第十一章_第2页
物理学第三版(刘克哲 张承琚)课后习题答案第十一章_第3页
物理学第三版(刘克哲 张承琚)课后习题答案第十一章_第4页
物理学第三版(刘克哲 张承琚)课后习题答案第十一章_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、物理学 11 章习题解答11-1 如果导线中的电流强度为 8.2 ,问在 15 s 内有多少电子通过导线的横截面?解 设在 t 秒内通过导线横截面的电子数为n,则电流可以表示为,所以.11-2 在玻璃管内充有适量的某种气体,并在其两端封有两个电极,构成一个气体放电管。当两极之间所施加的电势差足够高时,管中的气体分子就被电离,电子和负离子向正极运动,正离子向负极运动,形成电流。在一个氢气放电管中,如果在 3 s 内有2.810 个电子和 1.010 个质子通过放电管的横截面,求管中电流的流向和这段时间1818内电流的平均值。解 放电管中的电流是由电子和质子共同提供的,所以.电流的流向与质子运动的

2、方向相同。11-3 两段横截面不同的同种导体串联在一起,如图 11-7所示,两端施加的电势差为 u。问:通过两导体的电流是否相同?两导体内的电流密度是否相同?两导体内的电场强度是否相同?如果两导体的长度相同,两导体的电阻之比等于什么?如果两导体横截面积之比为 1: 9以及两导体有相同电阻时的长度之比。解通过两导体的电流相同,两导体的电流密度不相同,因为,图 11-7又因为,所以.这表示截面积较小的导体电流密度较大。1根据电导率的定义,在两种导体内的电场强度之比为.上面已经得到,故有.这表示截面积较小的导体中电场强度较大。根据公式,可以得到,这表示,两导体的电阻与它们的横截面积成反比。已知,容易

3、得到其他各量的比例关系,.若,则两导体的长度之比为.11-4 两个同心金属球壳的半径分别为 a 和 ba,其间充满电导率为的材料。已知=ke,其中k为常量。现在两球壳之间维持电压u,求两球壳间的电流。解 在两球壳之间作一半径为 r 的同心球面,若通过该球面的电流为 i,则.又因为,所以2.于是两球壳之间的电势差为.从上式解出电流 i,得.11-5 一个电阻接在电势差为 180 v 电路的两点之间,发出的热功率为 250w。现将300 v的电路上,问其热功率为多大?解 根据焦耳定律,热功率可以表示为,该电阻可以求得,为.当将该电阻接在电压为 u = 300 v的电路上时其热功率为2.11-7 2

4、.0 ,测得蓄电池两极间的电势差为6.6v;当该蓄电池放电时,放电电流为3.0 ,测得蓄电池两极间的电势差为5.1 v。求该蓄电池的电动势和内阻。解 设蓄电池的电动势 、为内阻为r。充电时,电流为i = 2.0 ,两端的电压为u =116.6 v,所以. (1)放电时,电流为 i = 3.0 ,两端的电压为 u = 5.1 ,所以22. (2)以上两式联立,解得,.11-8 将阻值为3.6 的电阻与电动势为2.0 v0.51 ,求电源的内阻。解 在这种情况下,电路的电流可以表示为3.由此解得电源的内阻为.11-9 沿边长为 a 的等边三角形导线流过电流为 ,求:等边三角形中心的磁感应强度;以此

5、三角形为底的正四面体顶角的磁感应强度。解由载流导线 ab 在三角形中心 o见图 11-8)产生的磁感应强度 b 的大小为1,.图 11-8于是.由三条边共同在点 o 产生的磁感应强度的大小为,方向垂直于纸面向里。图 11-9 (a)表示该四面体,点 p ab 在点p 产生的磁感应强度的大小为,式中 b 是点 p 到 ab .图 11-9 = , =pbd =pad12120 ,于是,b处于平面 pcd pd 11-9 11-9 (b)还可以看到,b与竖直轴线 op 的夹角为,所以载流导线 在点 产生的磁感应强度沿该竖直轴的abp分量为4.由于对称性,载流导线bc和 ca在点 p 产生的磁感应强

6、度沿竖直轴的分量,与上式相同。同样由于对称性,三段载流导线在点p 产生的磁感应强度垂直于竖直轴的分量彼此抵消。所以点 p 的实际磁感应强度的大小为,方向沿竖直轴 po 向下。11-10 两个半径相同、电流强度相同的圆电流,圆心重合,圆面正交,如图 11-10所示。如果半径为 r,电流为 i,求圆心处的磁感应强度 b。解 两个正交的圆电流,一个处于 xy平面内,产生的磁1磁感应强度 b ,沿y轴正方向。这两个磁感应强度的大小相2.圆心 o 处的磁感应强度 b 等于以上两者的合成,b 的大小为图 11-10,方向处于 yz平面内并与轴 y的夹角为 45 。11-11 两长直导线互相平行并相距 d以

7、同方向的电流 i 和i 。a 点到两导线的距离分别为12r 和 r ,如图11-11所示。如果d = 10.0 cm ,i = 12 ,12121212分别为图 11-11和,它们的方向表示在图 11-11中。r 和 r 之间的夹角,在图中画作任意角,而实际上这是一个直角,原因是12,所以 b 与 b 必定互相垂直。它们合成的磁感应强度b 的大小为125.设 b 与 b 的夹角为 ,则12,.11-14 一长直圆柱状导体,半径为r,其中通有电流i,并且在其横截面上电流密度均匀分布。求导体内、外磁感应强度的分布。解 电流的分布具有轴对称性,可以运用安培环路定理求解。 r 的圆形环路,如图 11-

8、12所示,在该环路上运用安培环路定理:在圆柱体内部,由上式解得当时).图 11-12在圆柱体外部,由上式解得当时) .11-15 一长直空心圆柱状导体,电流沿圆周方向流动,并且电流密度各处均匀。若导体的内、外半径分别为 r 和 r ,单位长度上的电流为i,求空心处、导体内部和导体12以外磁感应强度的分布。在管外空间:取环路 1,并运用安培环路定理,得,图 11-13.在管内空间:取环路 2,并运用安培环路定理,得,即6,.b 的方向可用右手定则确定,在图11-13中用箭头表示了 b 方向。22在导体内部,取环路 3,ab 边处于导体内部,并与轴线相距 r。在环路 3 上运用安培环路定理,得,整

9、理后,得,于是可以解得,方向向左与轴线平行。2解 导线和磁场方向的相对状况如图12-15 所示。根据图 12-15安培定律,导线所受磁场力的大小为,力的方向垂直于纸面向里。11-17 有一长度为 1.20 m 的金属棒,质量为 0.100 ,用两根细线缚其两端并悬挂于磁感应强度大小为 1.00 t 的匀强磁场中,磁场的方向与棒垂直,如图 11-16所示。若金属棒通以电流时正好抵消了细线原先所受的张力,求电流的大小和流向。解 设金属棒所通电流为 i,所以图 11-16.电流的流向为自右向左。711-18 在同一平面内有一长直导线和一矩形单匝线圈,矩形线圈的长边与长直导 11-17 i = 20

10、i = 10 ,12求矩形线圈所受的磁场力。,图 11-18方向向左。cd边所受磁场力的大小为,方向沿水平向左,与图 11-18中 f 的方向相同。1图 11-1711-19 在半径为 r 的圆形单匝线圈中通以电流 i ,另在1一无限长直导线中通以电流 i ,此无限长直导线通过圆线圈的中心并与圆线圈处于同一2平面内,如图 11-19所示。求圆线圈所受的磁场力。解 建立如图所示的坐标系。根据对称性,整个圆线圈所受磁场力的 y分量为零,只考虑其x分量就够了。在圆线圈1.图 11-19电流元所受的磁场力的大小为.这个力的方向沿径向并指向圆心坐标原点。将、代入上式,得.其 x分量为,整个圆线圈所受磁场

11、力的大小为,8负号表示 f 沿 x轴的负方向。x11-20 有一 10 匝的矩形线圈,长为0.20 m,宽为0.15 m,放置在磁感应强度大小为 1.510 t 的匀强磁场中。若线圈中每匝的电流为10 ,求它所受的最大力矩。3解 该矩形线圈的磁矩的大小为,磁矩的方向由电流的流向根据右手定则确定。当线圈平面与磁场方向平行,也就是线圈平面的法向与磁场方向相垂直时,线圈所受力矩为最大,即.11-21 当一直径为 0.020 m 的 10 匝圆形线圈通以 0.15 a电流时,其磁矩为多大?若将这个线圈放于磁感应强度大小为 1.5 t 的匀强磁场中,所受到的最大力矩为多大?解 线圈磁矩的大小为.所受最大

12、力矩为.11-22 由细导线绕制成的边长为 a 的 n 匝正方形线圈,可绕通过其相对两边中点的铅直轴旋转,在线圈中通以电流 i,并将线圈放于水平取向的磁感应强度为 b 的匀强磁场中。求当线圈在其平衡位置附近作微小振动时的周期t。设线圈的转动惯量为j,并忽略电磁感应的影响。解 设线圈平面法线与磁感应强度b 成一微小夹角 ,线圈所受力矩为. (1)根据转动定理,有,式中负号表示 l 的方向与角加速度的方向相反。将式代入上式,得,或写为. (2)令9,(3)将式代入式,得(4)因为 是常量,所以上式是标准的简谐振动方程,立即可以得到线圈的振动周期,为.1施加的外磁场的磁感应强度 b a 的时间。图

13、11-20解 要使电子沿图中所示的轨道运动,施加的外磁场的方,.电子到达点 a 的时间为.11-24 电子在匀强磁场中作圆周运动,周期为 t = 10 s。8求磁感应强度的大小;如果电子在进入磁场时所具有的能量为 3.010 ,求圆周的半径。3解洛伦兹力为电子作圆周运动提供了向心力,故有,由此解出 b,得.电子在磁场中作圆周运动的轨道半径可以表示为,将代入上式,得10.11-25 电子在磁感应强度大小为 b = 2.010 t 的匀强磁场中,沿半径为r = 2.0 cm3的螺旋线运动,螺距为 h = 5.0 。求电子的运动速率。解 电子速度垂直于磁场的分量 可如下求得,所以.电子速度平行于磁场

14、的分量 v 可根据螺距的公式求得/,所以.于是,电子的运动速率为.11-26 241解 根据题意,电场、磁场和电子的运动速度v三者的相对取向如图 11-21所示。要使电子沿直线运动,速度 v的大小应满图 11-21足,所以速度的大小应为.11-29 半径为 r 的磁介质球被均匀磁化,磁化强度为 m,求:(1) 由磁化电流在球心产生的磁感应强度和磁场强度;11由磁化电流产生的磁矩。可以确定介质球表面的磁化电流的大小为,图 11-14 dl 的环,环上的磁化电流在球心 o 产生的磁感应强度可以表示为.k 是 z 方向的单位矢量。将、和代入上式积分,得,或写为矢量.磁场强度为.这表明,球内的磁场强度

15、的方向与磁化强度的方向相反。上一问所取的表面环的磁矩为,式中是圆环所包围的面积,代入上式并积分,得,或写为矢量.可见,整个磁介质球由磁化电流产生的磁矩等于磁介质的磁化强度与体积的乘积。从磁化强度的定义看,这个结论是显而易见的。1211-30 半径为 r 的无限长磁介质圆柱体做内导1圆柱体和圆柱面之间充满磁导率为 的均匀磁介质做绝缘体,2圆柱体内任意一点的磁场强度和磁感应强度;圆柱体和圆柱面之间任意一点的磁场强度和磁感应强度;圆柱面外任意一点的磁场强度和磁感应强度。解 电流和磁介质的分布都满足轴对称,可以用普遍形式的安培环路定理求解。在垂直于轴线的平面内,作三个同心圆,它们分图 11-15别处于

16、圆柱体内、圆柱体和圆柱面之间以及圆柱面外,其半径分别是r r 和 r3,如图1211-15所示。在圆柱体内部,以半径为r 的圆作为环路,运用安培环路定理,得1,.在圆柱体和圆柱面之间的绝缘体内,以半径为r 的圆作为环路,rr r,运用安培环路定理,得3,.11-31 一个螺绕环单位长度上的线圈匝数n= 10 cm ,绕组中的电流i = 2.0 。当在1螺绕环内充满磁介质时,测得其中磁感应强度 b = 1.0 ,试求:磁介质存在和不存在时,环内的磁场强度;磁介质存在和不存在时,环内的磁化强度;13磁介质的相对磁导率。解 在环内取半径为r 11-16所示。磁介质不存在时:,图 11-16.方向如图中箭头所示。磁介质存在时磁场强度不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论