结构动力学问题的有限元法_第1页
结构动力学问题的有限元法_第2页
结构动力学问题的有限元法_第3页
结构动力学问题的有限元法_第4页
结构动力学问题的有限元法_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、结构动力学问题的有限元法第1页,共34页,2022年,5月20日,19点3分,星期二工程中受动载荷的产品:受道路载荷的汽车;受风载的雷达;受海浪冲击的海洋平台;受偏心离心力作用的旋转机械等。动态分析的必要性:当产品受到随时间变化的动载荷时,需要进行动态分析,以了解产品动态特性。第2页,共34页,2022年,5月20日,19点3分,星期二第3页,共34页,2022年,5月20日,19点3分,星期二动载荷(又称动力分析)固有特性分析响应分析固有频率振型位移响应速度响应加速度响应动应变动应力第4页,共34页,2022年,5月20日,19点3分,星期二固有特性:是一组模态参数构成,它由结构本身(质量与

2、刚度分布)决定,而与外部载荷无关,但决定了结构对动载荷的响应;响应分析:是计算结构对给定动载荷的各种响应特性。第5页,共34页,2022年,5月20日,19点3分,星期二第一节 动态分析有限元法的特点一、载荷特点 结构所受的载荷是随时间变化的动载荷。 这是与静力分析的一个根本区别。二、位移特点 1、节点位移q不仅是坐标的函数,而且也是时间的函数。仍以节点位移q作为基本未知量。 2、节点具有速度 加速度。 第6页,共34页,2022年,5月20日,19点3分,星期二3、利用节点位移插值表示单元内任一点的位移一般仍采用与静力分析相同的形函数,N。当单元数量较多时,上述插值可以得到较好的插值精度。4

3、、在线弹性条件下,单元内的应变和应力与节点位移的关系仍为 但这时的位移、应变和应力都是某一时刻的瞬时值,它们都是随时间t变化的函数。第7页,共34页,2022年,5月20日,19点3分,星期二5、由于节点具有速度和加速度,结构将受到阻尼和惯性力的作用。根据达朗伯原理,引入惯性力和阻尼力之后结构仍处于平衡状态,因此动态分析中仍可采用虚位移原理来建立单元特性方程,然后再集成。整个结构的平衡方程为式又称运动方程,它不再是静力问题那样的线性方程,而是一个二阶常微分方程组。求解过程复杂,建立有限元模型时要特别注意控制模型规模。第8页,共34页,2022年,5月20日,19点3分,星期二第二节 动态分析有

4、限元法的一般步骤第9页,共34页,2022年,5月20日,19点3分,星期二一、结构离散该步骤与静力分析完全相同,只是应该分析内容不同,对网格形式的要求有可能不一样。静力分析:要求在应力集中部位加密网格;动态分析:由于固有频率和振型主要与结构的质量和刚度分布有关,要求整个结构采用尽可能均匀的网格形式。第10页,共34页,2022年,5月20日,19点3分,星期二二、单元分析单元分析的任务仍是建立单元特性矩阵,形成单元特性方程。动态分析中,单元特性矩阵:刚度矩阵、质量矩阵和阻尼矩阵。动态分析中,仍采用虚位移原理建立单元特性矩阵。第11页,共34页,2022年,5月20日,19点3分,星期二在动载

5、荷作用下,对于任一瞬时,设单元节点发生虚位移 ,则单元内也产生相应的虚位移 和虚应变 。单元内产生的虚应变能为:单元除受动载荷外,还有加速度和速度引起的惯性力 和阻尼力 ,其中为材料密度,v是线性阻尼系数。外力所做的虚功为:式中,Pv、Ps、Pc分别为作用于单元上的动态体力、动态面力和动态集中力;V为单元面积;A为单元面积。第12页,共34页,2022年,5月20日,19点3分,星期二由于且形函数仅为坐标x、y、z的函数,与时间无关,因此有根据虚位移原理,有代入经整理,可得单元运动方程为第13页,共34页,2022年,5月20日,19点3分,星期二式中分别称为单元的刚度矩阵、质量矩阵和阻尼矩阵

6、,它们就是决定单元动态性能的特性矩阵。称为单元节点动载荷列阵,它是作用在单元上的体力、面力和集中力向单元节点移置的结果。在动态分析和静力分析中,单元的刚度矩阵是相同的,外部载荷的移置原理也一样。第14页,共34页,2022年,5月20日,19点3分,星期二在动态分析中,单元的质量矩阵通常采用以下两种形式。1、一致质量矩阵按 形成的单元质量矩阵称为一致质量矩阵,因为它采用了和刚度一致的形函数。这种质量矩阵取决于单元的类型和形函数的形式。第15页,共34页,2022年,5月20日,19点3分,星期二2、集中质量矩阵集中质量矩阵将单元的分布质量按等效原则分配在各个节点上,等效原则就是要求不改变原单元

7、的质量中心,这样形成的质量矩阵称为集中质量矩阵。集中质量矩阵是一个对角阵,第16页,共34页,2022年,5月20日,19点3分,星期二集中质量矩阵:是一个对角阵,因而可简化动态计算,减小存储容量。利用这种矩阵计算出的结构固有频率偏低。不过有限元模型本身比实际结构偏刚,两者相互补偿,计算出的固有频率反而更接近真实值。一致质量矩阵:由于分布较合理,因此可以求得更精确的振型,另外,整个模型的质量分布还受网格划分形式的影响。第17页,共34页,2022年,5月20日,19点3分,星期二三、总体矩阵集成 总体矩阵集成的任务是将各单元特性矩阵装配成整个结构的特性矩阵,从而建立整体平衡方程,即式中,q为所

8、以节点位移分量组成的n阶列阵,n为结构总自由度数; (i为节点数),称为节点载荷列阵;K、M、C分别为结构的刚度矩阵、质量矩阵和阻尼矩阵。第18页,共34页,2022年,5月20日,19点3分,星期二其中K与静力分析中的总刚度矩阵完全相同,矩阵M、C也采用与K相同的集成方式,即矩阵K、M和C均为n阶对称阵。第19页,共34页,2022年,5月20日,19点3分,星期二四、固有特性分析 结构的固有特性由结构本身决定,与外部载荷无关,它由一组模态参数定量描述。包括:固有频率、模态振型、模态质量、模态刚度和模态阻尼比等。 固有特性分析就是对模态参数进行计算,其目的一是避免结构出现共振和有害的振型,二

9、是为响应分析提供必要依据。第20页,共34页,2022年,5月20日,19点3分,星期二 由于固有特性与外载荷无关,且阻尼对固有频率和振型影响不大,因此可通过无阻尼自由振动方程计算固有特性。式中,为简谐振动圆频率;为节点振幅列向量。由于自由振动可分解为一系列简谐振动的叠加,因此上式的解可设为第21页,共34页,2022年,5月20日,19点3分,星期二 将解代入振动方程中,同时消去因子ejt,可得振型i是结构按频率i振动时各自由度方向振幅间的相对比例关系,它反映了结构振动的形式,并不是振幅的绝对大小。上式为一广义特征问题。根据线性代数可知,求解该问题可以求出n个特征值 和相对应的n个特征向量

10、。其中特征值i(i=1,2,.,n)就是结构的i阶固有频率,特征向量i i(i=1,2,.,n)就是结构的i阶模态振型。第22页,共34页,2022年,5月20日,19点3分,星期二 固有特性分析实际上就是求解广义特征值问题。求解的数值方法主要有1、变换法基本思想是通过一系列矩阵变换,将矩阵MK化为对角阵,变换后的特征值不变,即原问题与特征值问题具有相同的特征值。先求特征值,再求特征向量,而且是一次性求出所以特征值和特征向量。该方法主要用于一些小型问题的求解。第23页,共34页,2022年,5月20日,19点3分,星期二 2、迭代法是对一选取的初始向量 和迭代公式求一向量序列 使它收敛于与 绝

11、对值最大的特征值相应的特征向量,在满足收敛精度时,以 作为 的特征量,再求出相应的特征值。先求特征向量,再求特征值,且从低阶到高阶依次求出各阶特征对,该法只适合求解35个低阶特征对。子空间迭代法,求大型结构的少数特征对。第24页,共34页,2022年,5月20日,19点3分,星期二五、响应分析 响应分析的目的是计算结构在动载荷作用下,节点位移、速度和加速度的变化规律。因此响应分析的任务就是求解二阶常微分方程组,求解主要有1、振型叠加法根据结构振动理论,在动载荷作用下,结构动态响应可以表示为其各阶主模态振型的线性叠加,即2、直接积分法是一种纯粹的数值方法。连续时间区域 离散 为n1离散点 时间间

12、隔T/n 每个时间间隔上的状态向量第25页,共34页,2022年,5月20日,19点3分,星期二瞬态分析- 术语和概念求解方法求解运动方程直接积分法模态叠加法隐式积分显式积分完整矩阵法缩减矩阵法完整矩阵法缩减矩阵法第26页,共34页,2022年,5月20日,19点3分,星期二五、约束处理和求解线性方程组 第27页,共34页,2022年,5月20日,19点3分,星期二制作振型动画:PlotCtrls Animate Mode Shape.循环对称结构的模态分析观察结果(接上页)典型命令:ANMODE,10,0.05第28页,共34页,2022年,5月20日,19点3分,星期二循环对称结构的模态分析观察结果(接上页)第29页,共34页,2022年,5月20日,19点3分,星期二循环对称结构的模态分析观察结果(接上页)第30页,共34页,2022年,5月20日,19

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论