版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知有穷数列2,3,满足2,3,且当2,3,时,若,则符合条件的数列的个数是 ABCD2数列,满足,则数列的前项和为( )ABCD3命题:,的否定是()A,B,C,D,4一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥
2、的体积为( )A4B8C16D245设,则的值为 ( )A7BC2D76一位母亲根据儿子岁身高的数据建立了身高与年龄(岁)的回归模型,用这个模型预测这个孩子岁时的身高,则正确的叙述是()A身高在左右B身高一定是C身高在以上D身高在以下7若,则等于( )ABCD8在三棱锥P-ABC中,若过AB的平面将三棱锥P-ABC分为体积相等的两部分,则棱PA与平面所成角的正弦值为( )ABCD9设随机变量服从正态分布N(3,4),若P(a+2),则实数a的值为A5B3C53D10定义在上的函数,若对于任意都有且则不等式的解集是( )ABCD11已知,为的导函数,则的图象是()ABCD12在4次独立重复试验中
3、,随机事件恰好发生1次的概率小于其恰好发生2次的概率,则事件在一次试验中发生概率的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13用分层抽样的方法从某校学生中抽取一个容量为45的样本,其中高一年级抽20人,高三年级抽10人,已知该校高二年级共有学生300人,则该校学生总数是_人.14对任意实数a,b定义运算“”: 设,若函数的图象与x轴恰有三个交点,则k的取值范围是_15连续抛掷同一颗骰子3次,则3次掷得的点数之和为9的概率是_16若小明在参加理、化、生三门课程的等级性考试中,取得等级的概率均为,且三门课程的成绩是否取得等级互不影响则小明在这三门课程的等级性考试中恰
4、有两门取得等级的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)当时,求不等式的解集;(2)设函数,当时,求的取值范围.18(12分)在复平面内,复数 (其中). (1)若复数为实数,求的值;(2)若复数为纯虚数,求的值;(3)对应的点在第四象限,求实数的取值范围19(12分)已知函数.(1)判断的奇偶性; (2)若在是增函数,求实数的范围.20(12分)某校举办国学知识问答中,有一道题目有5个选项A,B,C,D,E,并告知考生正确选项个数不超过3个,满分5分,若该题正确答案为,赋分标准为“选对1个得2分,选对2个得4分,选对3个得5分,每选
5、错1个扣3分,最低得分为0分”.假定考生作答的答案中的选项个数不超过3个.(1)若张小雷同学无法判断所有选项,只能猜,他在犹豫答案是“任选1个选项作为答案”或者“任选2个选项作为答案”或者“任选3个选项作为答案”,以得分期望为决策依据,则他的最佳方案是哪一种?说明理由.(2)已知有10名同学的答案都是3个选项,且他们的答案互不相同,他们此题的平均得分为x分.现从这10名同学中任选3名,计算得到这3名考生此题得分的平均分为y分,试求的概率.21(12分)如图,在四棱锥中,为矩形,是以为直角的等腰直角三角形,平面平面(1)证明:平面平面;(2) 为直线的中点,且,求二面角的余弦值.22(10分)已
6、知函数()当时,不等式有解,求实数的取值范围;()当时,不等式恒成立,求的最大值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先选出三个数确定为,其余三个数从剩下的7个里面选出来,排列顺序没有特殊要求.【详解】先确定,相当于从10个数值中选取3个,共有种选法,再从剩余的7个数值中选出3个作为,共有种选法,所以符合条件的数列的个数是,故选A.【点睛】本题主要考查利用排列组合的知识确定数列的个数,有无顺序要求,是选择排列还是组合的依据.2、D【解析】由题意是数列是等差数列,数列的等比数列,分别求出它们的通项,再利用等比数
7、列前项和公式即可求得.【详解】因为,所以数列是等差数列,数列的等比数列,因此,数列的前项和为:.故选:.【点睛】本题主要考查的是数列的基本知识,等差数列、等比数列的通项公式以及等比数列的求和公式的应用,是中档题.3、C【解析】根据全称命题的否定是特称命题,即可进行选择.【详解】因为全称命题的否定是特称命题,故可得,的否定是,.故选:C.【点睛】本题考查全称命题的否定,属基础题.4、B【解析】根据三视图知,三棱锥的一条长为6的侧棱与底面垂直,底面是直角边为2、4的直角三角形,利用棱锥的体积公式计算即可.【详解】由三视图知三棱锥的侧棱与底垂直,其直观图如图,可得其俯视图是直角三角形,直角边长为2,
8、4,棱锥的体积,故选B.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.5、D【解析】利用赋值法,令即可确定的值.【详解】题中所给等式中,令可得:,即,令可得:,即,据此可知:的值为.本题选择D选项.【点睛】本题主要考查赋值法及其应用,意在考查学生的
9、转化能力和计算求解能力.6、A【解析】由线性回归方程的意义得解.【详解】将代入线性回归方程求得由线性回归方程的意义可知是预测值,故选【点睛】本题考查线性回归方程的意义,属于基础题.7、D【解析】中最大的数为,包含个数据,且个数据是连续的正整数,由此可得到的表示.【详解】因为,所以表示从连乘到,一共是个正整数连乘,所以.故选:D.【点睛】本题考查排列数的表示,难度较易.注意公式:的运用.8、A【解析】由题构建图像,由,想到取PC中点构建平面ABD,易证得平面ABD,所以PA与平面所成角即为,利用正弦函数定义,得答案.【详解】如图所示,取PC中点为D连接AD,BD,因为过AB的平面将三棱锥P-AB
10、C分为体积相等的两部分,所以即为平面ABD;又因为,所以,又,所以,且,所以平面ABD,所以PA与平面所成角即为,因为,所以,所以故选:A【点睛】本题考查立体几何中求线面角,应优先作图,找到或证明到线面垂直,即可表示线面角,属于较难题.9、D【解析】根据正态分布的特征,可得2a-3+a+2=6,求解即可得出结果.【详解】因为随机变量服从正态分布N3,4,P根据正态分布的特征,可得2a-3+a+2=6,解得a=7故选D【点睛】本题主要考查正态分布的特征,熟记正态分布的特征即可,属于基础题型.10、D【解析】令,求导后根据题意知道在上单调递增,再求出,即可找到不等式的解集。【详解】令则所以在上单调
11、递增,又所以的解集故选D【点睛】本题考查利用导数解不等式,属于中档题。11、A【解析】先求得函数的导函数,再对导函数求导,然后利用特殊点对选项进行排除,由此得出正确选项.【详解】依题意,令,则.由于,故排除C选项.由于,故在处导数大于零,故排除B,D选项.故本小题选A.【点睛】本小题主要考查导数的运算,考查函数图像的识别,属于基础题.12、D【解析】设事件发生一次的概率为,根据二项分布求出随机事件恰好发生1次的概率,和恰好发生2次的概率,建立的不等式关系,求解即可.【详解】设事件发生一次的概率为,则事件的概率可以构成二项分布,根据独立重复试验的概率公式可得,所以.又,故.故选:D.【点睛】本题
12、考查独立重复试验、二项分布概率问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、900【解析】计算可得样本中高二年级人数,从而可计算得到抽样比,从而可求得学生总数.【详解】由题意可知,高二年级抽取:人 抽样比为:该校学生总数为:人本题正确结果:【点睛】本题考查分层抽样的应用,关键是能够明确每层在样本中占比与该层在总体中的占比相同.14、【解析】由,得,根据定义化简函数的解析式,作出函数的图象,利用函数与的图象有3个交点,利用数形结合即可得到结论【详解】解:令当时,解得,当时,解得或,或,函数的图象如图所示:由图象得:,函数与的图象有3个交点,即函数的图象与轴恰有三个公共点
13、;故答案为:【点睛】本题主要考查根据函数的解析式作出函数的图象,体现了化归与转化、数形结合的数学思想,根据定义求出的表达式是解决本题的关键,属于中档题15、;【解析】利用分步计数原理,连续拋掷同一颗骰子3次,则总共有:666=216种情况,再列出满足条件的所有基本事件,利用古典概型的计算公式计算可得概率.【详解】每一次拋掷骰子都有1,2,3,4,5,6,六种情况,由分步计数原理:连续抛掷同一颗骰子3次,则总共有:666=216种情况,则3次掷得的点数之和为9的基本事件为25种情况即:(1,2,6),(1,3,5),(1,4,4),(1,5,3),(1,6,2),(2,1,6),(2,2,5),
14、(2,3,4),(2,4,3),(2,5,2),(2,6,1),(3,1,5),(3,2,4),(3,3,3),(3,4,2),(3,5,1),(4,1,4),(4,2,3),(4,3,2),(4,4,1),(5,1,3),(5,2,2),(5,3,1),(6,1,2),(6,2,1),共25个基本事件,所以.【点睛】本题考查分步计数原理和古典概型概率计算,计数过程中如果前两个数固定,则第三个数也相应固定.16、【解析】利用次独立重复试验的公式即可求解.【详解】这三门课程的等级性考试取得的等级可看成进行3次相互独立的重复试验因而小明在这三门课程的等级性考试中恰有两门取得等级的概率为故答案为:【
15、点睛】本题主要考查了次独立重复试验的概率问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)将代入不等式,讨论范围去绝对值符号解得不等式.(2)利用绝对值三角不等式得到答案.【详解】(1) 当时, 综上(2)恒成立恒成立解不等式可得【点睛】本题考查了解绝对值不等式,绝对值三角不等式,利用绝对值三角不等式将恒成立问题转化为最值问题是解题的关键.18、(1)或4;(2);(3)【解析】(1)根据复数为实数条件列方程解得结果,(2)根据纯虚数定义列式求解,(3)根据复数几何意义列不等式解得结果【详解】(1)因为复数为实数,所以,所以或4;(
16、2)因为复数为纯虚数,所以,所以(3)因为对应的点在第四象限,所以解不等式组得,即的取值范围是.【点睛】本题考查复数相关概念以及复数几何意义,考查基本分析求解能力,属基础题.19、(1)当时,为偶函数,当时,既不是奇函数,也不是偶函数,;(2).【解析】(1)当时,对任意,为偶函数当时,取,得,函数既不是奇函数,也不是偶函数(2)设,要使函数在上为增函数,必须恒成立,即恒成立又,的取值范围是20、(1)他的最佳方案是“任选1个选项作为答案”或者“任选2个选项作为答案”,理由见解析;(2).【解析】(1)分情况讨论:当任选1个选项的得分为X分,可得X可取0,2,利用组合运算算出概率,并计算出期望
17、;当任选2个选项的得分为Y分,可得Y可取0,4,利用组合运算算出概率,并计算出期望;当任选3个选项的得分为Z分,则Z可取0,1,5,利用组合运算算出概率,并计算出期望;比较数值大小即可.(2)由题意可得这10名考生中有3人得分为0分,6人得分为1分,1人得分为5分,可得,由,、可得3人得分总分小于3.3,即可求解.【详解】(1)设任选1个选项的得分为X分,则X可取0,2,设任选2个选项的得分为Y分,则Y可取0,4, 设任选3个选项的得分为Z分,则Z可取0,1,5, 所以他的最佳方案是“任选1个选项作为答案”或者“任选2个选项作为答案” (2)由于这10名同学答案互不相同,且可能的答案总数为10
18、,则这10名考生中有3人得分为0分,6人得分为1分,1人得分为5分,则有,则3人得分总分小于3.3,则【点睛】本题考查了古典概型的概率计算公式、组合数的计算以及数学期望,考查了分类讨论的思想,属于中档题.21、()见解析;().【解析】()由为矩形,得,再由面面垂直的性质可得平面,则,结合,由线面垂直的判定可得平面,进一步得到平面平面; ()取中点O,分别以所在直线为轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得二面角的余弦值,再由平方关系求得二面角的正弦值【详解】()证明:为矩形,平面平面,平面平面,平面,则,又,平面,而平面,平面平面;()取中点O,分别以所在直线为轴建立空间直角坐标系,由,是以为直角的等腰直角三角形,得:,设平面的一个法向量为,由,取,得;设平面的一个法向量为,由,取,得.二面角的正弦值为【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厨房员工服务协议书
- 招生咨询合同范例
- 屋顶补漏工程合同书
- 2024年车辆损害赔偿协议书范本
- 技术服务聘用协议范本
- 最标准版商铺租赁合同
- 2024收养人员入院协议书样本
- 仓房租赁协议
- 定制外教聘请协议书
- 商标设计协议书
- 【物理】万有引力定律的应用、人类对太空的不懈探索课件-2023-2024学年高一下鲁科版(2019)必修第二册
- 做改革创新生力军
- 员工法律意识培训课件
- 【川教版】《生命 生态 安全》三年级上册 第13课《情绪气象图》课件
- 精神科风险评估
- 创建红旗班组总结汇报
- 模板工程质量检验与质量目标
- 家政技能服务流程培训方案
- 泌尿系统感染的预防与处理
- 素质教肓可行性报告
- 人教版五年级数学上册专项计算题12套(每日一练)
评论
0/150
提交评论