版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若方程在区间(-1,1)和区间(1,2)上各有一根,则实数的取值范围是( )ABCD或2若,则“”是 “”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条
2、件3已知复数,若是纯虚数,则实数等于( )A2B1C0或1D-14已知定义在上的偶函数在上单调递增,则函数的解析式 不可能是( )ABCD5若函数f(x)=(aR)是奇函数,则a的值为()A1B0C1D16已知命题,.则命题为( )A,B,C,D,7函数的图象是( )ABCD8已知命题是命题“若,则”的否命题;命题:若复数是实数,则实数,则下列命题中为真命题的是( )ABCD9已知复数为纯虚数,则ABC或D10已知集合,或,则( )ABCD11已知是定义域为的奇函数,满足若,则( )A50B2C0D-201812若复数为纯虚数,则实数的值为( )ABCD二、填空题:本题共4小题,每小题5分,共
3、20分。13已知棱长为的正方体,为棱中点,现有一只蚂蚁从点出发,在正方体表面上行走一周后再回到点,这只蚂蚁在行走过程中与平面的距离保持不变,则这只蚂蚁行走的轨迹所围成的图形的面积为_14已知正的边长为,则到三个顶点的距离都为的平面有_个.15期末考试结束后,某老师随机抽取了本班五位同学的数学成绩进行统计,五位同学平均每天学习数学的时间(分钟)与数学成绩之间的一组数据如下表所示:时间(分钟)30407090120数学成绩35488292通过分析,发现数学成绩与学习数学的时间具有线性相关关系,其回归方程为,则表格中的的值是_16已知cos,则二项式的展开式中的系数为_三、解答题:共70分。解答应写
4、出文字说明、证明过程或演算步骤。17(12分)已知函数(1)讨论函数的单调性;(2)设函数,当时,对任意的恒成立,求满足条件的最小的整数值18(12分)已知函数有两个零点,.()求的取值范围;()证明:.19(12分)如图,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液现将此容器倾斜一定角度(图),且倾斜时底面的一条棱始终在桌面上(图、均为容器的纵截面)(1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?(2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由20(12分)设命题:函数在上单调递增,命题:不等式对于恒成立,若“”为假,“
5、”为真,求实数的取值范围.21(12分)已知函数.(1)讨论在上的单调性;(2)若,求正数的取值范围.22(10分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.() 随机选取1件产品,求能够通过检测的概率;()随机选取3件产品,其中一等品的件数记为,求的分布列;()随机选取3件产品,求这三件产品都不能通过检测的概率.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】函数f(x)在区间(1,1)和区间(1,2)上分别存在一个零
6、点,则,解得即可【详解】函数f(x)ax22x+1在区间(1,1)和区间(1,2)上分别存在一个零点,即,解得a1,故选B【点睛】本题考查函数零点的判断定理,理解零点判定定理的内容,将题设条件转化为关于参数的不等式组是解本题的关键2、A【解析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能
7、灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.3、B【解析】分析:由复数是纯虚数,得实部等于0且虚部不等于0.求解即可得到答案.详解:复数是纯虚数,解得.故选B.点睛:此题考查复数的概念,思路:纯虚数是实部为0.虚部不为0的复数.4、D【解析】根据奇偶函数定义域关于原点对称求得的值.在根据单调性判断出正确选项.【详解】由于函数为偶函数,故其定义域关于原点对称,即,故函数的定义域为,且函数在上递增,故在上递减.对于A选项,符合题意.对于B选项,符合题意.对于C选项,符合题意.对于D选项,在上递减,不符合题意,故本小题选D.【点睛】本小题主要考查函数的奇偶性,考查函数的单
8、调性,考查含有绝对值函数的理解,属于基础题.5、B【解析】根据奇函数的性质,利用,代入即可求解,得到答案.【详解】由题意,函数是定义域R上的奇函数,根据奇函数的性质,可得,代入可得,解得,故选B.【点睛】本题主要考查了函数的奇偶性的应用,其中解答中熟记奇函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解析】利用全称命题的否定解答.【详解】命题,.命题为,.故选D【点睛】本题主要考查全称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.7、A【解析】根据已知中函数的解析式,利用导数法分析出函数的单调性及极值,比照四个答案函数的图象,可得答案【详解】,令得;当时,即
9、函数在内单调递减,可排除B,D;又时,排除C,故选A.【点睛】本题考查的知识点是函数的图象,分析出函数的单调性是解答的关键,属于中档题.8、D【解析】分析:先判断命题p,q的真假,再判断选项的真假.详解:由题得命题p:若ab,则,是假命题.因为是实数,所以所以命题q是假命题,故是真命题.故答案为 D.点睛:(1)本题主要考查四个命题和复数的基本概念,考查复合命题的真假,意在考查学生对这些知识的掌握水平.(2)复合命题的真假判断口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.9、B【解析】因为复数为纯虚数,且 ,所以,故选B.10、C【解析】首先解绝对值不等式,从而利用“并”运算即
10、可得到答案.【详解】根据题意得,等价于,解得,于是,故答案为C.【点睛】本题主要考查集合与不等式的综合运算,难度不大.11、B【解析】由题意可得,为周期为4的函数,分别求得一个周期内的函数值,计算可得所求和【详解】解:是定义域为的奇函数,可得,即有,即,进而得到,为周期为4的函数,若,可得,则,可得.故选:B【点睛】本题考查抽象函数的函数值的求和,注意运用函数的周期性,考查转化思想和运算能力,属于中档题12、C【解析】试题分析:若复数为纯虚数,则必有解得:,所以答案为C考点:1纯虚数的定义;2解方程二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:由题可知,蚂蚁在正方体表面上
11、行走一周的路线构成与平面平行的平面,且围成的图形为菱形,从而求得答案.详解:由题可知,蚂蚁在正方体表面上行走一周的路线构成与平面平行的平面, 设、分别为、中点,连接,和,则为蚂蚁的行走轨迹.正方体的棱长为2,易得,四边形为菱形,故答案为.点睛:本题考查面面平行和正方体截面问题的应用,正确理解与平面的距离保持不变的含义是解题关键.14、1【解析】分类讨论,三个顶点都在平面的同一侧,三个顶点在平面的两侧,一侧一个,另一侧两个【详解】若此平面与平面平行,这样的平面有2个到三顶点距离为1,若此平面与平面相交,则一定过三角形其中两边的中点,由于三角形边长为,因此如过的中点和的中点的平面,到三顶点距离为1
12、的有两个,这样共有6个,所以所求平面个数为1故答案为:1【点睛】本题考查点到平面的距离,由于是三角形的三个顶点到平面的距离相等,因此要分类讨论,即三角形所在平面与所求平面平行和相交两种情形,相交时为保证距离相等,平面必定过三角形两边中点15、63【解析】回归方程过样本中心点,则:,即:,解得:.点睛:(1)正确理解计算的公式和准确的计算是求线性回归方程的关键(2)回归直线方程必过样本点中心16、【解析】分析:由微积分基本定理求出,再写出二项展开式的通项,令的指数为1,求得,从而求得的系数详解:,二项式展开式通项为,令,则的系数为故答案为1点睛:求二项展开式有关问题的常见类型及解题策略(1)求展
13、开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】(1)用导数讨论单调性,注意函数的定义域;(2)写出的具体形式,然后分离参数,进而讨论函数最值的范围,得出整数参量的取值范围.【详解】解:(1)由题意,函数的定义域为,当时,单调增区间为:当时,令,由,得,的单调递增区间为,的单调递减区间为:(2)由,因为对任意的恒成立当时对任意的恒成立,只需对任意的恒成立即可构造函数,且单调递增
14、,一定存在唯一的,使得即,.单调递增区间,单调递减区间的最小的整数值为【点睛】本题考查用导数讨论函数单调性和函数的最值问题,其中用构造函数,属于函数导数不等式的综合题,难度较大18、()()见解析【解析】分析:(1)先令,再求出,再研究函数的图像得到a的取值范围.(2)利用分析法证明不等式,再转化为 证明.详解:()由题意,设,则,当时,函数单调递减,又,故在区间上,在区间上.所以在区间上函数单调递增,在区间上函数单调递减.故.又,当时,所以.()不妨设,由()可知.设函数,要证,只需证即可.又,故,由()可知函数在区间上单调递增,故只需证明,又,即.设 ,又,.所以在区间上单调递减,所以成立
15、,故.点睛:(1)本题主要考查利用导数研究函数图像和性质,考查利用导数证明不等式和分析法证明不等式,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)j解答本题的关键有三点,其一是转化为,其二是转化为,其三是证明在区间上单调递减.19、(1)要使倾斜后容器内的溶液不会溢出,的最大值是45(2)不能实现要求,详见解析【解析】(1)当倾斜至上液面经过点B时,容器内溶液恰好不会溢出,此时最大(2)当时,设剩余的液面为,比较与60的大小后发现在上,计算此时倒出的液体体积,比小,从而得出结论【详解】(1)如图,当倾斜至上液面经过点B时,容器内溶液恰好不会溢出,此时最大解法一:此时,梯形的面积等于
16、,因为,所以, 即,解得,所以,要使倾斜后容器内的溶液不会溢出,的最大值是45解法二:此时,的面积等于图中没有液体部分的面积,即,因为,所以,即,解得,所以,要使倾斜后容器内的溶液不会溢出,的最大值是45(2)如图,当时,设上液面为,因为,所以点F在线段上,此时,,剩余溶液的体积为,由题意,原来溶液的体积为,因为,所以倒出的溶液不满所以,要倒出不少于的溶液,当时,不能实现要求【点睛】本题考查三角函数的实际应用,解题关键是确定倾斜后容器内的溶液的液面位置,然后才能计算解决问题20、的取值范围是【解析】试题分析:命题p:函数在R上单调递增,a1,又命题q:不等式对于恒成立=(-a)-40, -2a
17、2“”为假,“”为真, p,q必一真一假;(1)当p真,q假时,有,(2) 当p假,q真时,有,-2a1.综上, 实数的取值范围为-12分考点:本题考查了复合命题的真假点评:“P或Q”是真命题,“P且Q”是假命题,根据真假表知,P,Q之中一真一假,因此有两种情况,要分类讨论21、(1)见解析;(2)【解析】分析:(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)求出f(x)的最大值,得到关于a的函数,结合函数的单调性求出a的范围即可详解:(1),当时,在上单调递减;当时,若,;若,在上单调递减,在上单调递增当时,在上单调递减;当时,若,;若,在上单调递减,在上单调递增综上可
18、知,当时,在上单调递减;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增(2),当时,;当时,即,设,当时,;当时,点睛:这个题目考查的是利用导数研究函数的单调性,用导数解决恒成立求参的问题;对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.22、(1);(2)分布列见解析;(3).【解析】()设随机选取一件产品,能够通过检测的事件为A,事件A包括两种情况,一是抽到的是一个一等品,二是抽到的是一个二等品,这两种情况是互斥的,根据互斥事件的概率公式得到结果;(II)由题意知X的可能取值是0,1,2,3,结合变量对应的事件和等可能事
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版房屋买卖合同中的税费分担约定3篇
- 二零二五版电力工程监理劳务分包合同范本2篇
- 基于2025年度预算的网络营销与电商平台建设合同3篇
- 二零二五年度餐饮行业特色农产品配送与扶贫合作合同3篇
- 二零二五版二手房定金交易合同范本2篇
- 二零二五年环保净化设备销售与排放监测合同2篇
- 二零二五年船舶制造车间通风除尘系统合同3篇
- 物业管理委托合同2025年度版18篇
- 二零二五年网络安全风险评估与整改服务合同规范文本283篇
- 全新2025年度体育用品生产加工合同:体育用品设计公司与制造商之间的生产加工协议3篇
- 历史-广东省大湾区2025届高三第一次模拟试卷和答案
- 2024年安全生产法律、法规、标准及其他要求清单
- 2023年高考文言文阅读设题特点及备考策略
- 抗心律失常药物临床应用中国专家共识
- 考级代理合同范文大全
- 2024解析:第三章物态变化-讲核心(原卷版)
- DB32T 1590-2010 钢管塑料大棚(单体)通 用技术要求
- 安全行车知识培训
- 2024年安徽省高校分类对口招生考试数学试卷真题
- 第12讲 语态一般现在时、一般过去时、一般将来时(原卷版)
- 2024年采购员年终总结
评论
0/150
提交评论