版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
2、目要求的。1下面几种推理过程是演绎推理的是( )A在数列|中,由此归纳出的通项公式B由平面三角形的性质,推测空间四面体性质C某校高二共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D两条直线平行,同旁内角互补,如果和是两条平行直线的同旁内角,则2甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.4,则本次比赛甲获胜的概率是( )A0.216B0.36C0.352D0.6483若函数为偶函数,则( )A-1B1C-1或1D04某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A1B2C3D45
3、已知函数是上的奇函数,且的图象关于对称,当时,则的值为ABC0D16宋元时期数学名著算学启蒙中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的分别为12,4,则输出的等于( )A4B5C6D77已知复数满足(为虚数单位),则( )ABCD8若对于任意实数,函数恒大于零,则实数的取值范围是( )ABCD9将函数的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则的一个可能取值为ABC0D10在二项式的展开式中任取2项,则取出的2项中系数均为偶数的概率为( )ABCD11已知命题:,命题:,且是的必要不充分条件,则实数的取
4、值范围是( )ABCD12过双曲线的一个焦点作垂直于实轴的直线,交双曲线于,是另一焦点,若,则双曲线的离心率等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13,其共轭复数对应复平面内的点在第二象限,则实数的范围是_14已知函数是上的增函数,则实数的数值范围为_.15已知的展开式中的系数为,则_16直线与抛物线交于两点,且经过抛物线的焦点,已知,则线段的中点到准线的距离为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设命题实数满足();命题实数满足(1)若且pq为真,求实数的取值范围;(2)若q是p的充分不必要条件,求实数的取值范围18(12分
5、)已知,分别为三个内角,的对边,.()求;()若=2,的面积为,求,.19(12分)已知函数,将的图象向右平移两个单位长度,得到函数的图象(1)求函数的解析式;(2)若方程在上有且仅有一个实根,求的取值范围;(3)若函数与的图象关于直线对称,设,已知对任意的恒成立,求的取值范围20(12分)在一次数学测验后,班级学委对选答题的选题情况进行统计,如下表:几何证明选讲极坐标与参数方程不等式选讲合计男同学124622女同学081220合计12121842(1)在统计结果中,如果把几何证明选讲和极坐标与参数方程称为“几何类”,把不等式选讲称为“代数类”,我们可以得到如下22列联表.几何类代数类合计男同
6、学16622女同学81220合计241842能否认为选做“几何类”或“代数类”与性别有关,若有关,你有多大的把握?(2)在原始统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选答题的同学中随机选出7名同学进行座谈已知这名学委和2名数学课代表都在选做“不等式选讲”的同学中求在这名学委被选中的条件下,2名数学课代表也被选中的概率;记抽取到数学课代表的人数为,求的分布列及数学期望下面临界值表仅供参考:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821(12分)已知椭圆经过两点.(1)求椭圆的方程;(2
7、)若直线交椭圆于两个不同的点是坐标原点,求的面积22(10分)在直角坐标系中,曲线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(1)求和的直角坐标方程;(2)求上的点到距离的最小值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:演绎推理是由普通性的前提推出特殊性结论的推理其形式在高中阶段主要学习了三段论:大前提、小前提、结论,由此对四个命题进行判断得出正确选项详解:A在数列an中,a1=1,通过计算a2,a3,a4由此归纳出an的通项公式”是归纳推理B选项“由平面三角形
8、的性质,推出空间四边形的性质”是类比推理C选项“某校高二(1)班有55人,高二(2)班有52人,由此得高二所有班人数超过50人”是归纳推理;D选项选项是演绎推理,大前提是“两条直线平行,同旁内角互补,”,小前提是“A与B是两条平行直线的同旁内角”,结论是“A+B=180,是演绎推理.综上得,D选项正确故选:D 点睛:本题考点是进行简单的演绎推理,解题的关键是熟练掌握演绎推理的定义及其推理形式,演绎推理是由普通性的前提推出特殊性结论的推理演绎推理主要形式有三段论,其结构是大前提、小前提、结论2、C【解析】先列举出甲获胜的情况,再利用独立事件的概率乘法公式可计算出所求事件的概率。【详解】记事件A:
9、甲获胜,则事件A包含:比赛两局,这两局甲赢;比赛三局,前两局甲、乙各赢一局,第三局甲赢。由独立事件的概率乘法公式得PA故选:C.【点睛】本题考查独立事件的概率乘法公式的应用,解题前先要弄清事件所包含的基本情况,并逐一列举出来,并结合概率的乘法公式进行计算,考查计算能力,属于中等题。3、C【解析】由f(x)为偶函数,得,化简成xlg(x2+1m2x2)0对恒成立,从而得到x2+1m2x21,求出m1即可【详解】若函数f(x)为偶函数,f(x)f(x),即;得对恒成立,x2+1m2x21,(1m2)x20,1m20,m1故选C【点睛】本题考查偶函数的定义,以及对数的运算性质,平方差公式,属于基础题
10、4、C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.5、C【解析】先根据函数的图象关于对称且是上的奇函数,可求出函数的最小正周期,再由时,即可求出结果.【详解】根据题意,函数的图象关于对称,则,又由函数是上的奇函数,则,则有,变形可得,即函数是周期为4的周期函数,则,又
11、由函数是上的奇函数,则,故.故选C【点睛】本题主要考查函数的基本性质,周期性、奇偶性、对称性等,熟记相关性质即可求解,属于常考题型.6、A【解析】分析:本题给只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误)详解:模拟程序的运行,可得,不满足结束循环的条件,执行循环体,; 不满足结束循环的条件,执行循环体,;不满足结束循环的条件,执行循环体,;满足结束循环的条件,退出循环,输出的值为,故选A.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结
12、构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7、C【解析】整理得到,根据模长的运算可求得结果.【详解】由得: 本题正确选项:【点睛】本题考查向量模长的求解,属于基础题.8、D【解析】求出函数的导数,根据导数的符号求出函数的单调区间,求出最值,即可得到实数的取值范围【详解】当时,恒成立若,为任意实数,恒成立若时,恒成立即当时,恒成立,设,则当时,则在上单调递增当时,则在上单调递减当时,取得最大值为则要使时,恒成
13、立,的取值范围是故选【点睛】本题以函数为载体,考查恒成立问题,解题的关键是分离含参量,运用导数求得新函数的最值,继而求出结果,当然本题也可以不分离参量来求解,依然运用导数来分类讨论最值情况。9、B【解析】将函数的图象沿轴向右平移个单位后,得到函数的图象对应的函数解析式为再根据所得函数为偶函数,可得故的一个可能取值为:故选B10、C【解析】二项式的展开式共十项,从中任取2项,共有种取法,再研究其系数为偶数情况有几个,从中取两个有几种取法得出答案【详解】二项式的展开式共十项,从中任取2项,共有种取法,展开式系数为偶数的有,共六个,取出的2项中系数均为偶数的取法有种取法,取出的2项中系数均为偶数的概
14、率为故选:【点睛】本题考查二项式定理及等可能事件的概率,正确求解本题的关键是找出哪些项的系数是偶数,求出取出的2项中系数均为偶数的事件包含的基本事件数11、A【解析】首先对两个命题进行化简,解出其解集,由是的必要不充分条件,可以得到关于的不等式,解不等式即可求出的取值范围【详解】由命题:解得或,则,命题:,由是的必要不充分条件,所以故选【点睛】结合“非”引导的命题考查了必要不充分条件,由小范围推出大范围,列出不等式即可得到结果,较为基础。12、B【解析】根据对称性知是以点为直角顶点,且,可得,利用双曲线的定义得出,再利用锐角三角函数的定义可求出双曲线的离心率的值.【详解】由双曲线的对称性可知,
15、是以点为直角顶点,且,则,由双曲线的定义可得,在中,故选B.【点睛】本题考查双曲线的离心率的求解,要充分研究双曲线的几何性质,在遇到焦点时,善于利用双曲线的定义来求解,考查逻辑推理能力和计算能力,属于中等题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据共轭复数对应的点所在的象限,列出不等式组求解.【详解】由已知得:,且在第二象限,所以: ,解得: ,所以 故答案为 .【点睛】本题考查共轭复数的概念和其对应的点所在的象限,属于基础题.14、.【解析】根据在上的单调性列不等式组,解不等式组求得的取值范围.【详解】依题意可知且,所以.由于在上递增,所以即,解得.故答案为:【点睛】
16、本小题主要考查根据分段函数单调性求参数的取值范围,属于中档题.15、【解析】分析:展开式中的系数为前一项中常数项与后一项的二次项乘积,加上第一项的系数与后一项的系数乘积的和,由此列方程求得的值.详解:,其展开式中含项的系数为,解得,故答案为.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.16、【解析】先根据抛物线方程求得焦点坐标,设点坐标为,
17、进而可得直线方程,把点代入可求得点坐标,进而根据抛物线的定义,即可求得答案【详解】由题意,抛物线知,设点坐标为,由直线过焦点,所以直线的方程为,把点代入上式得,解得,所以,所以线段中点到准线的距离为,故答案为.【点睛】本题主要考查了直线与抛物线的关系的应用,其中解答中涉及抛物线的焦点弦的问题时,常常利用抛物线的定义来解决,着重考查了推理与运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) ;(2) .【解析】试题分析:(1)若a=1,分别求出p,q成立的等价条件,利用且pq为真,求实数x的取值范围;(2)利用p是q的充分不必要条件,即q是p的充分
18、不必要条件,求实数a的取值范围试题解析:(1)由得,又,所以,当时,即为真时实数的取值范围为.为真时实数的取值范围是,若为真,则真真,所以实数的取值范围是.(2)是的充分不必要条件,即 , 等价于,设,则是的真子集;则,且所以实数 的取值范围是.18、 (1)(2)=2【解析】()由及正弦定理得由于,所以,又,故.()的面积=,故=4,而故=8,解得=219、(1)(2)(3)【解析】 【试题分析】(1)借助平移的知识可直接求得函数解析式;(2)先换元将问题进行等价转化为有且只有一个根,再构造二次函数运用函数方程思想建立不等式组分析求解;(3)先依据题设条件求出函数的解析式,再运用不等式恒成立
19、求出函数的最小值:解:(1) (2)设,则,原方程可化为于是只须在上有且仅有一个实根, 法1:设,对称轴t=,则 , 或 由得 ,即, 由得 无解, ,则 法2:由,得,设,则,记,则在上是单调函数,因为故要使题设成立,只须,即,从而有 (3)设的图像上一点,点关于的对称点为, 由点在的图像上,所以,于是 即.由,化简得,设,即恒成立. 解法1:设,对称轴则 或 由得, 由得或,即或综上,. 解法2:注意到,分离参数得对任意恒成立 设,即 可证在上单调递增 20、(1)答案见解析;(2).;.答案见解析.【解析】分析:(1)由题意知K2的观测值k4.5823.841,则有95%的把握认为选做“几何类”或“代数类”与性别有关(2)由题意结合条件概率计算公式可知在学委被选中的条件下,2名数学课代表也被选中的概率为;由题意知X的可能取值为0,1,2.由超几何分布计算相应的概率值可得其分布列,然后计算其数学期望为E(X).详解:(1)由题意知K2的观测值k4.5823.841,所以有95%的把握认为选做“几何类”或“代数类”与性别有关(2)由题可知在选做“不等式选讲”的18名学生中,要选取3名同学,令事件A为“这名学委被选中”,事件B为“两名数学课代表被选中”,则,由题意知X的可能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 买卖私人店面合同模板
- 2024年家电维修服务委托协议
- 会所租凭合同模板
- 2024年型燃气管道改造工程合同
- 工程招标咨询合同模板
- 2024年全球购销协议:商品买卖合同样本
- 小酒店用工合同模板
- 分红股认购合同模板
- 土地融资合同模板
- 2024年儿童乐园场地租赁合同:快乐与教育的完美结合
- 《小巴掌童话》整本书阅读指导杨老师
- 破产管理人工作履职报告
- 第一次工地会议内容与议程
- 《低压断路器》PPT课件.ppt
- 苹果和牛顿的故事.ppt
- 肠套叠实用教案
- 收益法酒店评估(共51页).doc
- 胜利油田钻完井液技术现状及发展趋势钻井院
- 【实用版】一年级上册一年级语文期中复习ppt课件
- 非物质文化遗产对经济发展的影响
- 属鼠的人住几楼最吉利_属猪的人适合住几楼
评论
0/150
提交评论