安徽省黄山市普通高中2021-2022学年高二数学第二学期期末达标检测试题含解析_第1页
安徽省黄山市普通高中2021-2022学年高二数学第二学期期末达标检测试题含解析_第2页
安徽省黄山市普通高中2021-2022学年高二数学第二学期期末达标检测试题含解析_第3页
安徽省黄山市普通高中2021-2022学年高二数学第二学期期末达标检测试题含解析_第4页
安徽省黄山市普通高中2021-2022学年高二数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设非零向量,满足,则与的夹角为( )ABCD2 “搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得

2、到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A这半年中,网民对该关键词相关的信息关注度呈周期性变化B这半年中,网民对该关键词相关的信息关注度不断减弱C从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值3已知为实数,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4已知点为双曲线上一点,则它的离心率

3、为()ABCD5若均为非负整数,在做的加法时各位均不进位(例如,),则称为“简单的”有序对,而称为有序数对的值,那么值为2964的“简单的”有序对的个数是( )A525B1050C432D8646 “三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大. 假设李某智商较高,他独自一人解决项目M的概率为;同时,有个水平相同的人也在研究项目M,他们各自独立地解决项目M的概率都是.现在李某单独研究项目M,且这个人组成的团队也同时研究项目M,设这个人团队解决项目M的概率为,若,则的最小值是( )A3B4C5D67已知点在抛物线的准线上,为的焦点,过点的直线与相切于点,则的面积为( )

4、A1B2CD48下列命题中真命题的个数是( ),;若“”是假命题,则都是假命题;若“,”的否定是“,”A0B1C2D39若,则的值是()A-2B-3C125D-13110已知函数,若是图象的一条对称轴的方程,则下列说法正确的是( )A图象的一个对称中心B在上是减函数C的图象过点D的最大值是11从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为A18B200C2800D3360012已知回归方程,则该方程在样本处的残差为( )A5B2C1D-1二、填空题:本题共4小题,每小题5分,共20分。13已知是两个非零向量,且,则的最大值为_14已知函数的

5、图像经过第二、三、四象限,则的取值范围是_15从1、3、5、7中任取2个数字,从0、2、4、6中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有_个.(用数字作答)16已知则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知为椭圆的右焦点,点在上,且轴(1)求的方程(2)过的直线交于两点,交直线于点证明:直线的斜率成等差数列18(12分)某地方政府召开全面展开新旧动能转换重大工程动员大会,动员各方力量,迅速全面展开新旧动能转换重大工程某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前、后生产的大量产品中各抽取了200

6、件作为样本,检测一项质量指标值若该项质量指标值落在内的产品视为合格品,否则为不合格品如图所示的是设备改造前样本的频率分布直方图(1)若设备改造后样本的该项质量指标值服从正态分布,求改造后样本中不合格品的件数;(2)完成下面22列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量标值与设备改造有关0设备改造前设备改造后合计合格品件数不合格品件数合计附参考公式和数据:若,则,0.1500.1000.0500.0250.0102.0722.7063.8415.0246.63519(12分)按照国家质量标准:某种工业产品的质量指标值落在内,则为合格品,否则为不合格品某企业有甲乙两套设备生产这

7、种产品,为了检测这两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本对规定的质量指标值进行检测表1是甲套设备的样本频数分布表,图1是乙套设备的样本频率分布直方图表1:甲套设备的样本频数分布表(1)将频率视为概率,若乙套设备生产了5000件产品,则其中合格品约有多少件?(2)填写下面22列联表,并根据列联表判断是否有95%的把握认为这种产品的质量指标值与甲乙两套设备的选择有关:20(12分)在各项为正的数列an中,数列的前n项和Sn满足. (1)求 (2)由(1)猜想数列的通项公式,并用数学归纳法证明你的猜想21(12分)在九章算术中,将有三条棱相互平行且有一个面为

8、梯形的五面体称为“羡除”如图所示的五面体是一个羡除,其中棱AB,CD,EF相互平行,四边形ABEF是梯形已知CDEF,AD平面ABEF,BEAF(1)求证:DF平面BCE;(2)求证:平面ADF平面BCE22(10分)已知函数f(x)aln x (aR)(1)当a1时,求f(x)在x1,)内的最小值;(2)若f(x)存在单调递减区间,求a的取值范围;(3)求证ln(n1) (nN*)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由,且,可得,展开并结合向量的数量积公式,可求出的值,进而求出夹角.【详解】由,且,得,则

9、,即,故,则,故.又,所以.故选:B【点睛】本题考查向量夹角的求法,考查向量的数量积公式的应用,考查学生的计算求解能力,属于基础题.2、D【解析】选项A错,并无周期变化,选项B错,并不是不断减弱,中间有增强C选项错,10月的波动大小11月分,所以方差要大D选项对,由图可知,12月起到1月份有下降的趋势,所以去年12月份的平均值大于今年1月份的平均值选D.3、B【解析】分析:由,则成立,反之:如,即可判断关系详解:由,则成立,反之:如,则不成立,所以“”是“”的必要不充分条件,故选B点睛:本题主要考查了不等式的性质及必要不充分条件的判定,着重考查了推理与运算能力,属于基础题4、B【解析】将点P带

10、入求出a的值,再利用公式 计算离心率。【详解】将点P带入得,解得 所以【点睛】本题考查双曲线的离心率,属于基础题。5、B【解析】分析:由题意知本题是一个分步计数原理,第一位取法两种为0,1,2,第二位有10种从0,1,2,3,4,5,6,7,8,9 第三位有7种,0,1,2,3,4,5,6第四为有5种,0,1,2,3,4根据分步计数原理得到结果详解:由题意知本题是一个分步计数原理,第一位取法两种为0,1 2第二位有10种从0,1,2,3,4,5,6,7,8,9 第三位有7种,0,1,2,3,4,5,6第四为有5种,0,1,2 3,4根据分步计数原理知共有31075=1050个 故答案为:B.点

11、睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决6、B【解析】设这个人团队解决项目的概率为,则,由,得,由此能求出的最小值【详解】李某智商较高,他独自一人解决项目的概率为,有个水平相同的人也在研究项目,他们各自独立地解决项目的概率都是0

12、.1,现在李某单独研究项目,且这个人组成的团队也同时研究,设这个人团队解决项目的概率为,则,解得的最小值是1故选【点睛】本题考查实数的最小值的求法,考查次独立重复试验中事件恰好发生次的概率的计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题7、B【解析】根据题中条件可得到抛物线方程,由直线和抛物线相切得到切点N的坐标,进而求得面积.【详解】点在抛物线的准线上,可得到p=2,方程为:,切点N(x,y),满足,过点的直线设为和抛物线联立得到,取k=1,此时方程为 的面积为: 故答案为:B.【点睛】这个题目考查了直线和抛物线的位置关系,当直线和抛物线相切时,可以联立直线和抛物线,使得

13、判别式等于0,也可以设出切点坐标求导得到该点处的斜率.8、B【解析】若,故命题假;若“”是假命题,则至多有一个是真命题,故命题是假命题;依据全称命题与特征命题的否定关系可得命题“”的否定是“”,即命题是真命题,应选答案B9、C【解析】试题分析:由题意可知,令得,令得所以考点:二项式系数10、A【解析】利用正弦函数对称轴位置特征,可得值,从而求出解析式,利用的图像与性质逐一判断即可【详解】是图象的一条对称轴的方程,又,.图象的对称中心为,故A正确;由于的正负未知,所以不能判断的单调性和最值,故B,D错误;,故C错误.故选A.【点睛】本题主要考查三角函数的图像与性质11、C【解析】根据组合定义以及

14、分布计数原理列式求解.【详解】从5种主料中选2种,有种方法,从8种辅料中选3种,有种方法,根据分布计数原理得烹饪出不同的菜的种数为,选C.【点睛】求解排列、组合问题常用的解题方法:分布计数原理与分类计数原理,具体问题可使用对应方法:如 (1)元素相邻的排列问题“捆邦法”;(2)元素相间的排列问题“插空法”;(3)元素有顺序限制的排列问题“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题间接法.12、D【解析】分析:先求当x=3时,的值5,再用4-5=-1即得方程在样本处的残差.详解:当x=3时,4-5=-1,所以方程在样本处的残差为-1.故答案为:D.点睛:(1)本题主要考查

15、残差的计算,意在考查学生对该知识的掌握水平.(2)残差=实际值-预报值,不要减反了.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造,从而可知,于是的最大值可以利用基本不等式得到答案.【详解】由题意,令,所以,所以,所以,所以,当且仅当,且时取等号.故答案为.【点睛】本题主要考查平面向量的几何意义,模,基本不等式等知识,考查学生的运算求解能力,难度较大.14、【解析】利用函数的图像经过第二、三、四象限可得:,整理可得:,再利用指数函数的性质即可得解.【详解】因为函数的图像经过第二、三、四象限,所以,解得:又又,所以,所以所以,所以的取值范围是【点睛】本题主要考查了指数函数的性

16、质及计算能力、分析能力,还考查了转化能力,属于中档题15、1【解析】题目要求得到能被5整除的数字,注意0和5 的排列,分三种情况进行讨论,四位数中包含5和0的情况,四位数中包含5,不含0的情况,四位数中包含0,不含5的情况,根据分步计数原理得到结果【详解】解:四位数中包含5和0的情况:四位数中包含5,不含0的情况:四位数中包含0,不含5的情况:四位数总数为故答案为:1【点睛】本题是一个典型的排列问题,数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏,属于中档题.16、【解析】x用x+1代入二项式,可得,只需求

17、二项式展开式的第3项,即可求。【详解】x用x+1代,可得,由第3项公式,得,填8.【点睛】二项式定理的应用(1)求二项式定理中有关系数的和通常用“赋值法”(2)二项式展开式的通项公式Tr1Canrbr是展开式的第r1项,而不是第r项三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)运用椭圆的定义和勾股定理,可得a,b,进而得到椭圆方程;(2)由题意可设直线AB的方程为y=k(x-2),求得M的坐标,联立椭圆方程,运用韦达定理,以及直线的斜率公式,结合等差数列的中项性质,化简整理,即可得证【详解】解:(1) 因为点在上,且轴,所以,设椭圆

18、左焦点为,则,中,所以所以,又,故椭圆的方程为;(2)证明:由题意可设直线的方程为,令得,的坐标为,由得,设,则有,记直线,的斜率分别为,从而,因为直线的方程为,所以,所以代入得,又,所以,故直线,的斜率成等差数列【点睛】本题考查椭圆方程的求法,注意运用点满足椭圆方程,考查直线的斜率成等差数列,注意运用联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题18、(1)10;(2)列联表见解析,有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关【解析】(1)设备改造后该项质量指标服从正态分布,得,然后,然后即可求出(2)由设备改造前样本的频率分布直方图,可知不合格

19、频数为,然后填表,再算出即可【详解】解:(1)设备改造后该项质量指标服从正态分布,得,又,设备改造后不合格的样本数为(2)由设备改造前样本的频率分布直方图,可知不合格频数为得22列联表如下设备改造前设备改造后合计合格品160190350不合格品401050合计200200400,有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关【点睛】本题考查的知识点有正态分布、频率分布直方图、独立性检验,属于基础题型.19、(1)800件;(2)见解析;【解析】(1) 结合频数分布表,求出满足条件的概率,再乘以5000即可;(2)求出22列联表,计算K2值,判断即可【详解】(1)由图知,乙套设

20、备生产的不合格品率约为;乙套设备生产的5000件产品中不合格品约为(件);(2)由表1和图得到列联表:甲套设备乙套设备合计合格品484290不合格品2810合计5050100将列联表中的数据代入公式计算得;有95%的把握认为产品的质量指标值与甲、乙两套设备的选择有关;【点睛】本题考查了频率分布直方图与独立性检验的应用问题,准确计算是关键,是基础题20、 (1)见解析.(2)见解析.【解析】试题分析:(I)由,n分别取1,2,3,代入计算,即可求得结论,猜想;(II)用数学归纳法证明的关键是n=k+1时,变形利用归纳假设试题解析:(1)当时,或(舍,). 当时, 当时, 猜想:. (2)证明:当时,显然成立 假设时,成立, 则当时,, 即 . 由、可知,. 点睛:数学归纳法两个步骤的关系:第一步是递推的基础,第二步是递推的根据,两个步骤缺一不可,有第一步无第二表,属于不完全归纳法,论断的普遍性是不可靠的;有第二步无第一步中,则第二步中的假设就失去了基础只有把第一步结论与第二步结论联系在一起,才可以断定命题对所有的自然数n都成立21、(1)证明见解析;(2)证明见解析【解析】(1)证明四边是平行四边形,再用线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论