版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
2、目要求的。1已知数列的前项和为,若,则( )AB0C1D22某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是( )A甲的极差是29B甲的中位数是24C甲罚球命中率比乙高D乙的众数是213若对任意的,关于的不等式恒成立,则实数的取值范围为( )ABCD4已知双曲线上有一个点A,它关于原点的对称点为B,双曲线的右焦点为F,满足,且,则双曲线的离心率e的值是ABC2D5为了测算如图所示的阴影部分的面积,作一个边长为3的正方形将其包含在内,并向正方形内随机投掷600个点已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是A4B
3、3C2D16六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A192种B216种C240种D288种7已知复数且,则的范围为( )ABCD8已知集合,则( )ABCD9点M的极坐标(4,A(4,3)B(410在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A甲地:总体均值为3,中位数为4B乙地:总体均值为1,总体方差大于0C丙地:中位数为2,众数为3D丁地:总体均值为2,总体方差为311已知集合,则如图中阴影部分
4、所表示的集合为( )ABCD12在一组样本数据为,(,不全相等)的散点图中,若所有样本点都在直线上,则这组样本数据的相关系数为( )ABC1D-1二、填空题:本题共4小题,每小题5分,共20分。13一个酒杯的轴截面是抛物线的一部分,它的方程是x2=2y(0y20)在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r的范围为 14直线与圆恒有交点,则实数a的取值范围是 .15在长方体中,点为线段的中点,点为对角线上的动点,点为底面上的动点,则的最小值为_16命题:,使得成立;命题,不等式恒成立.若命题为真,则实数的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
5、17(12分)已知函数,.(1)解关于的不等式;(2)若函数在区间上的最大值与最小值之差为5,求实数的值;(3)若对任意恒成立,求实数的取值范围.18(12分)A、B、C是球O表面上三点,AB=6,ACB=30,点O到ABC所在截面的距离为5,求球O的表面积19(12分)已知函数,()当时,证明:为偶函数;()若在上单调递增,求实数的取值范围;()若,求实数的取值范围,使在上恒成立20(12分)已知的三个顶点为,为的中点.求: (1)所在直线的方程; (2)边上中线所在直线的方程; (3)边上的垂直平分线的方程21(12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得
6、一分,答错得零分假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用表示甲队的总得分.()求随机变量分布列; ()用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).22(10分)已知函数,.()当时,求函数在点处的切线方程;()当时,讨论函数的零点个数.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】首先根据得到数列为等差数列,再根据,即可算出的值.【详解】因为,所以数列为等差数列.因为,所以.因为,所以.故选:C【点睛】
7、本题主要考查等差数列的性质,同时考查了等差中项,属于简单题.2、B【解析】通过茎叶图找出甲的最大值及最小值求出极差判断出A对;找出甲中间的两个数,求出这两个数的平均数即数据的中位数,判断出D错;根据图的数据分布,判断出甲的平均值比乙的平均值大,判断出C对【详解】由茎叶图知甲的最大值为37,最小值为8,所以甲的极差为29,故A对甲中间的两个数为22,24,所以甲的中位数为故B不对甲的命中个数集中在20而乙的命中个数集中在10和20,所以甲的平均数大,故C对乙的数据中出现次数最多的是21,所以D对故选B【点睛】茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况茎叶图不能直接
8、反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况3、C【解析】令f(x)=|2x+1|x4|,然后将f(x)化成分段函数,则m的最大值为f(x)的最小值【详解】设F(x)|2x1|x4|如图所示,F(x)min3.故mF(x)min.【点睛】本题考查了绝对值在分段函数中的应用,正确去掉绝对值符号是关键4、B【解析】设是双曲线的左焦点,由题可得是一个直角三角形,由,可用表示出,利用双曲线定义列方程即可求解【详解】依据题意作图,如下:其中是双曲线的左焦点,因为,所以,由双曲线的对称性可得:四边形是一个矩形,且,在中,,由双曲线定义得:,即:,整理得:,故选B【
9、点睛】本题主要考查了双曲线的简单性质及双曲线定义,考查计算能力,属于基础题5、B【解析】根据几何概率的计算公式可求,向正方形内随机投掷点,落在阴影部分的概率,即可得出结论【详解】本题中向正方形内随机投掷600个点,相当于600个点均匀分布在正方形内,而有200个点落在阴影部分,可知阴影部分的面积故选:B【点睛】本题考查的是一个关于几何概型的创新题,属于基础题解决此类问题的关键是读懂题目意思,然后与学过的知识相联系转化为熟悉的问题在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域上任置都是等可能的,
10、而对于角度而言,则是过角的顶点的一条射线落在的区域(事实也是角)任一位置是等可能的6、B【解析】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种故选B7、C【解析】转化为,设,即直线和圆有公共点,联立,即得解.【详解】由于设联立:由于直线和圆有公共点,故的范围为故选:C【点睛】本题考查了直线和圆,复数综合,考查了学生转化划归,数学运算的能力,属于中档题.8、A【解析】分析:根据题意,求得集合,再利用集合的运算,即可求解详解:由题意,所以,故选A点睛:本题
11、主要考查了集合的运算问题,其中正确求解集合是解答的关键,着重考查了推理与运算能力9、C【解析】在点M极径不变,在极角的基础上加上,可得出与点M关于极点对称的点的一个极坐标。【详解】设点M关于极点的对称点为M,则OM所以点M的一个极坐标为(4,76)【点睛】本题考查点的极坐标,考查具备对称性的两点极坐标之间的关系,把握极径与极角之间的关系,是解本题的关键,属于基础题。10、D【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故
12、乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差11、D【解析】由图象可知阴影部分对应的集合为,然后根据集合的基本运算求解即可.【详解】由Venn图可知阴影部分对应的集合为,或,即 ,故选D.【点睛】本题主要考查集合的计算,利用图象确定集合关系是解题的关键,考查分析问题和解决问题的能力,属于基础题.12、D【解析】根据回归直线方程可得相关系数【详解】根据回归直线方程是yx+2,可得这两个变量是负相关,故这组样本数据的样本相关系数为负值,且所有样本点(xi,yi)(i1,2,n)都在直线上,则有|r|1,相关系数r1故选D【
13、点睛】本题考查了由回归直线方程求相关系数,熟练掌握回归直线方程的回归系数的含义是解题的关键二、填空题:本题共4小题,每小题5分,共20分。13、0r1【解析】设小球圆心(0,y0)抛物线上点(x,y)点到圆心距离平方r2=x2+(yy0)2=2y+(yy0)2=y2+2(1y0)y+y02若r2最小值在(0,0)时取到,则小球触及杯底,此二次函数对称轴在纵轴左边,所以1y00所以0y01所以0r1故答案为0r1点评:本题主要考查了抛物线的应用考查了学生利用抛物线的基本知识解决实际问题的能力14、【解析】配方得,则,由已知直线和圆相交或相切,且直线过定点(0,1),只需点(0,1)在圆内或圆上,
14、,则,综上所述的取值范围是.15、【解析】画出图形,利用折叠与展开法则使和在同一个平面,转化折线段为直线段距离最小,即可求得的最小值【详解】当的最小值,即到底面的距离的最小值与的最小值之和.为底面上的动点,当是在底面上的射影,即是最小值.展开三角形与三角形在同一个平面上,如图: 长方体中,长方体体对角线长为: 在中: 故 故 过点作,即为最小值.在,故答案为:.【点睛】解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些条件发生了变化,哪些条件没有发生变化.这些未变化的已知条件都是我们分析问题和解决问题的依据.16、【解析】分析:命题为真,则都为真,分别求出取交集即可.详
15、解:命题为真,则都为真,对,使得成立,则;对,不等式恒成立,则,又(当且仅当时取等),故.故答案为.点睛:本题考查函数的性质,复合命题的真假判定方法,考查了推理能力与计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3),【解析】(1)令由得进而求解;(2)由(1)知在上单调递增,进而求解;(3)根据指数函数的图象特征,将不等式恒成立转化为函数图象的交点问题【详解】(1)令,则,解得,即(2)由(1)知,在上单调递增,解得或(舍。(3),即令,由和函数图象可知,对,恒成立,在,为增函数,且图象是由向右平移3个单位得到的,所以在,恒成立,
16、只需,即,的取值范围为,.【点睛】本题考查指数型不等式、二次函数的图象和性质、不等式恒成立问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力、运算求解能力.18、【解析】根据正弦定理求出ABC截面圆的半径,再由距离求出球的半径,再求出其表面积。【详解】在 中 【点睛】根据正弦定理求出ABC截面圆的半径,再由距离求出球的半径,再求出其表面积。19、()证明见解析;();().【解析】试题分析:(1)当时,的定义域关于原点对称,而,说明为偶函数;(2)在上任取、,且,则恒成立,等价于恒成立,可求得的取值范围;(3)先证明不等式恒成立,等价于,即恒成立,利用配方法求得的最大值,
17、即可得结果.试题解析:()当时,定义域关于原点对称,而,说明为偶函数()在上任取、,且,则,因为,函数为增函数,得,而在上调递增,得,于是必须恒成立,即对任意的恒成立,()由()、()知函数在上递减,在上递增,其最小值,且,设,则,于是不等式恒成立,等价于,即恒成立,而,仅当,即时取最大值,故20、(1)x+1y-4=2;(1)1x-3y+6=2;(3)y=1x+1【解析】(1)直线方程的两点式,求出所在直线的方程;(1)先求BC的中点D坐标为(2,1),由直线方程的截距式求出AD所在直线方程;(3)求出直线BC的斜率,由两直线垂直的条件求出直线DE的斜率,再由斜截式求出DE的方程【详解】(1)因为直线BC经过B(1,1)和C(-1,3)两点,由两点式得BC的方程为 , 即x+1y-4=2 (1)设BC中点D的坐标为(x,y),则x=2,y=1 BC边的中线AD过点A(-3,2),D(2,1)两点,由截距式得AD所在直线方程为,即1x-3y+6=2 (3)BC的斜率,则BC的垂直平分线DE的斜率k1=1, 由斜截式得直线DE的方程为y=1x+121、()的分布列为0123P ()【解析】()由题意知,的可能取值为0,1,2,3,且所以的分布列为0123P()用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以AB=CD,且C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 推动班级历史文化活动的开展计划
- 西南林业大学《家具设计实验》2022-2023学年第一学期期末试卷
- 西南交通大学《软件设计综合实验》2022-2023学年第一学期期末试卷
- 2024年01月11334纳税筹划期末试题答案
- 西昌学院《立体构成》2022-2023学年第一学期期末试卷
- 西北大学《大学生心理健康教育》2021-2022学年第一学期期末试卷
- 第九单元实验活动6一定溶质质量分数的氯化钠溶液的配制教学设计-2024-2025学年九年级化学人教版(2024)下册
- 机器人操作系统(ROS)课件10.4 机器人SLAM及自主导航
- 2024年国家宪法日暨法制宣传周活动方案
- 毕业设计 网上评教系统设计与实现
- 太阳系中的有趣科学学习通超星期末考试答案章节答案2024年
- 走近湖湘红色人物智慧树知到答案2024年湖南工商大学
- AQ6111-2023个体防护装备安全管理规范
- FZ∕T 32001-2018 亚麻纱行业标准
- 国开2023秋《人文英语3》第5-8单元作文练习参考答案
- 时光科技主轴S系列伺服控制器说明书
- (完整)五年级上册数学口算500题
- 货物进出口证明书
- lonely-planet-PDF-大全
- 烟花爆竹零售店点安全技术规范
- 汽车转向系统设计规范
评论
0/150
提交评论