版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某程序框图如图所示,若运行该程序后输出()ABCD2点的直角坐标化成极坐标为( )ABCD3
2、的值为( )ABCD4 “k1”是“函数f(x)=kx-lnx在区间A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5设,则( )ABCD6已知集合,全集,则等于( )ABCD7已知,则( )A11B12C13D148已知曲线在点处的切线与直线垂直,则实数的值为()A-4B-1C1D49用数学归纳法证明时,第一步应验证不等式( )ABCD10现有60个机器零件,编号从1到60,若从中抽取6个进行检验,用系统抽样的方法确定所抽的编号可以是( )A3,13,23,33,43,53B2,14,26,38,40,52C5,8,31,36,48,54D5,10,15,20,25,3011
3、已知直线倾斜角是,在轴上截距是,则直线的参数方程可以是( )ABCD12函数yx42x25的单调递减区间为()A(,1和0,1B1,0和1,)C1,1D(,1和1,)二、填空题:本题共4小题,每小题5分,共20分。13在ABC中,AB3,AC2,BAC120,.若,则实数的值为_14若,则x的值为_15两名女生,4名男生排成一排,则两名女生不相邻的排法共有_种(以数字作答)16下表是某厂14月份用水量(单位:百吨)的一组数据:月份1234用水量4.5432.5由散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归直线方程是,则等于_三、解答题:共70分。解答应写出文字说明、证明过程或演
4、算步骤。17(12分)将一枚六个面的编号为1,2,3,4,5,6的质地均匀的正方体骰子先后掷两次,记第一次出的点数为,第二次出的点数为,且已知关于、的方程组.(1)求此方程组有解的概率;(2)若记此方程组的解为,求且的概率.18(12分)设数列an的前n项和为Sn且对任意的正整数n都有:(1)求S1(2)猜想Sn的表达式并证明19(12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月对甲、乙两种移动支付方式的使用情况,从全校学生中随机抽取了100人作为样本,发现样本中甲、乙两种支付方式都不使用的有10人,样本中仅使用甲种支付方式和仅使
5、用乙种支付方式的学生的支付金额分布情况如下:支付金额(元)支付方式大于1000仅使用甲15人8人2人仅使用乙10人9人1人(1)从全校学生中随机抽取1人,估计该学生上个月甲、乙两种支付方式都使用的概率;(2)从样本中仅使用甲种支付方式和仅使用乙种支付方式的学生中各随机抽取1人,以表示这2人中上个月支付金额大于500元的人数,用频率近似代替概率,求的分布列和数学期望20(12分)已知函数(1)求函数的解析式;(2)解关于的不等式21(12分)已知函数.(1)若不等式的解集,求实数的值.(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.22(10分)已知函数满足,其中.(1)求的值及的最
6、小正周期;(2)当时,求的最值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】通过分析可知程序框图的功能为计算,根据最终输出时的值,可知最终赋值时,代入可求得结果.【详解】根据程序框图可知其功能为计算:初始值为,当时,输出可知最终赋值时 本题正确选项:【点睛】本题考查根据程序框图的功能计算输出结果,关键是能够明确判断出最终赋值时的取值.2、D【解析】分别求得极径和极角,即可将直角坐标化为极坐标.【详解】由点M的直角坐标可得:,点M位于第二象限,且,故,则将点的直角坐标化成极坐标为.本题选择D选项.【点睛】本题主要考查
7、直角坐标化为极坐标的方法,意在考查学生的转化能力和计算求解能力.3、C【解析】分析:直接利用微积分基本定理求解即可.详解: ,故选C.点睛:本题主要考查微积分基本定理的应用,特殊角的三角函数,意在考查对基础知识的掌握情况,考查计算能力,属于简单题.4、A【解析】分析:求出导函数f(x),若函数f(x)=kx-lnx在(1,+)单调递增,可得f(x)详解:f(x)=k-1x ,若函数函数f(x)=kx-lnx在(1,+)单调递增,f(x)0 在区间(1,+)上恒成立k1x ,而y=1x在区间(1,+)上单调递减,点睛:本题考查充分不必要条件的判定,考查利用导数研究函数的单调性、恒成立问题的等价转
8、化方法,属中档题5、B【解析】根据对数运算法则求得,进而求得,由此得到结果.【详解】,.故选:.【点睛】本题考查指数、对数比较大小的问题,涉及到对数的运算,属于基础题.6、D【解析】先解出集合、,再利用补集和交集的定义可得出.【详解】因为,即或,所以,则,应选答案D.【点睛】本题考查集合的交集和补集的运算,同时也涉及了二次不等式与对数不等式的解法,考查运算求解能力,属于中等题.7、B【解析】,整理,得,;解得,或(不合题意,舍去);n的值为12.故选:B.8、C【解析】先求出在点处的切线斜率,然后利用两直线垂直的条件可求出的值.【详解】由题意,则曲线在点处的切线斜率为4,由于切线与直线垂直,则
9、,解得.故选C.【点睛】本题考查了导数的几何意义,考查了两直线垂直的性质,考查了计算能力,属于基础题.9、B【解析】根据,第一步应验证的情况,计算得到答案.【详解】因为,故第一步应验证的情况,即.故选:.【点睛】本题考查了数学归纳法,意在考查学生对于数学归纳法的理解和掌握.10、A【解析】由题意可知:606【详解】根据题意可知,系统抽样得到的产品的编号应该具有相同的间隔,且间隔是606【点睛】本题考查了系统抽样的原则.11、D【解析】由倾斜角求得斜率,由斜截式得直线方程,再将四个选项中的参数方程化为普通方程,比较可得答案.【详解】因为直线倾斜角是,所以直线的斜率,所以直线的斜截式方程为:,由消
10、去得,故不正确;由消去得,故不正确;由消去得,故不正确;由消去得,故正确;故选:D.【点睛】本题考查了直线方程的斜截式,参数方程化普通方程,属于基础题.12、A【解析】对函数求导,研究导函数的正负,求使得导函数小于零的自变量的范围,进而得到单调区间.【详解】y4x34x4x(x21),令y0,得单调递减区间为(,1),(0,1).故答案为A.【点睛】这个题目考查了利用导数求函数的单调区间,对函数求导,导函数大于0,解得函数单调增区间;导函数小于0得到函数的减区间;注意函数的单调区间一定要写成区间的形式.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意画出图形,结合图形,用
11、表示出,利,即可求出的值.【详解】如图所示,中,解得,故答案为:【点睛】本题主要考查了向量的基本定理及向量数量积的运算性质的简单应用,属于基础试题14、4或9.【解析】分析:先根据组合数性质得,解方程得结果详解:因为,所以因此点睛:组合数性质:15、480【解析】分析:由题意,先排男生,再插入女生,即可得两名女生不相邻的排法.详解:由题意,其中名男生共有种不同的排法,再将两名女生插入名男生之间,共有中不同的方法,所以两名女生不相邻的排法共有中不同的排法.点睛:本题主要考查了排列的应用,其中认真分析题意,得道现排四名男生,在把两名女生插入四名男生之间是解答的关键,着重考查了分析问题和解答问题的能
12、力.16、【解析】首先求出x,y的平均数,根据样本中心点满足线性回归方程,把样本中心点代入,得到关于a的一元一次方程,解方程即可【详解】:(1+2+3+4)2.5,(4.5+4+3+2.5)3.5,将(2.5,3.5)代入线性回归直线方程是0.7x+a,可得3.51.75+a,故a故答案为【点睛】本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先根据方程组有解得关系,再确定取法种数,最后根据古典概型概率公式求结果;(2)先求方程组解,再根据解的情况得关系,进而确
13、定取法种数,最后根据古典概型概率公式求结果.【详解】(1)因为方程组有解,所以而有这三种情况,所以所求概率为;(2)因为且,所以因此即有种情况,所以所求概率为;【点睛】本题考查古典概型概率以及二元一次方程组的解,考查综合分析求解能力,属中档题.18、(1)12,23【解析】(1)分别代入n=1,2,3计算即可求解;(2)猜想:Sn=【详解】当n=1,S当n=2,当n=3,(2)猜想:Sn证明:当n=1时,显然成立;假设当n=k(k1且kN*)则当n=k+1时,由(Sk+1-1)2整理得Sk+1即n=k+1时,猜想也成立.综合得Sn【点睛】本题考查递推数列求值,数学归纳法证明,考查推理计算能力,
14、是基础题19、 (1)0.45;(2) 的分布列见解析;数学期望为0.9【解析】(1)用减去仅使用甲、仅使用乙和两种都不使用的人数,求得都使用的人数,进而求得所求概率.(2)的所有可能值为0,1,2.根据相互独立事件概率计算公式,计算出的分布列,并求得数学期望.【详解】解:(1)由题意知,样本中仅使用甲种支付方式的学生有人,仅使用乙种支付方式的学生有人,甲、乙两种支付方式都不使用的学生有10人.故样本中甲、乙两种支付方式都使用的学生有人所以从全校学生中随机抽取1人,该学生上个月甲、乙两种支付方式都使用的概率估计为.(2)的所有可能值为0,1,2.记事件为“从样本仅使用甲种支付方式的学生中随机抽
15、取1人,该学生上个月的支付金额大于500元”,事件为“从样本仅使用乙种支付方式的学生中随机抽取1人,该学生上个月的支付金额大于500元”由题设知,事件A,B相互独立,且所以所以的分布列为0120.30.50.2故的数学期望【点睛】本小题主要考查频率的计算,考查相互独立事件概率计算,考查离散型随机变量分布列和数学期望的计算,属于中档题.20、 (1) (2) 【解析】(1)令,得,求出的范围,得出的范围,再将代入题中函数解析式即可得出函数的解析式与定义域;(2)将所求不等式转化为,然后解出该不等式组即可得出答案【详解】(1)令,则,由题意知,即,则所以,故(2)由,得由,得,因为,所以,由,得,即,解得或.又,所以或.故不等式的解集为.【点睛】本题第(1)问考查函数解析式的求解,对于简单复合函数解析式的求解,常用换元法,但要注意新元的取值范围作为定义域,第(2)问考查对数不等式的解法,一般要转化为同底数对数来处理,借助对数函数的单调性求解,同时也要注意真数大于零这个隐含条件21、(1) (2)【解析】(1)由根据绝对值不等式的解法列不等式组,结合不等式的解集,求得的值.(2)利用绝对值不等式,证得的最小值为4,由此求得的取值范围.【详解】(1)函数,故不等式,即,即,求得.再根据不等式的解集为.可得,实数.(2)在(1)的条件下,存在实数使成立,即,由于,的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业喷洒防尘网施工方案
- 吉林大学《嵌入式系统》2021-2022学年期末试卷
- 乡镇党员积分制管理与考核方案
- 2024武汉市农副产品购销结合合同
- 幼儿园防止欺凌行为的管理制度
- 国际学校课程评估制度创新
- 配电箱智能监控方案
- 2024-2025学年新教材高中英语Unit3Fasterhigherstronger四Writing课时作业含解析外研版选择性必修第一册
- 2025届高考语文二轮复习专项提升对点练二正确使用熟语含解析
- 2024-2025学年新教材高中政治第二单元认识社会与价值选择第6课第2框价值判断与价值选择随堂训练含解析部编版必修4
- 生活中的物理-完整版课件
- 道路护栏采购项目供货、运输方案
- 校园垃圾收集清运方案
- 朱智贤的心理发展观课件
- 青马工程培训班课件
- 【培训课件】医疗技术准入制度培训-医疗技术管理
- 船舶航行能耗优化与效率提升
- 项目对比方案模板
- 颅内动脉瘤围手术期的护理
- 认识休克管理休克课件
- 2024年插花花艺师培训考试题库(含答案)
评论
0/150
提交评论