2022年广东省东莞中学松山湖学校数学高二下期末教学质量检测试题含解析_第1页
2022年广东省东莞中学松山湖学校数学高二下期末教学质量检测试题含解析_第2页
2022年广东省东莞中学松山湖学校数学高二下期末教学质量检测试题含解析_第3页
2022年广东省东莞中学松山湖学校数学高二下期末教学质量检测试题含解析_第4页
2022年广东省东莞中学松山湖学校数学高二下期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若是离散型随机变量,又已知,则的值为( )ABC3D12已知椭圆的短轴长为2,上顶点为,左顶点为,分别是椭圆的左、右焦点,且的面积为,点为椭圆上的任意一点,则的取值范围为( )ABC

2、D3设,则z的共轭复数为ABCD4 “所有9的倍数都是3的倍数.某数是9的倍数,故该数为3的倍数,”上述推理A完全正确B推理形式不正确C错误,因为大小前提不一致D错误,因为大前提错误5已知函数满足,函数.若函数与的图象共有个交点,记作,则的值为ABCD6一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为,则D等于A0.2 B0.8 C0.196 D0.8047如图,函数的图象在点P处的切线方程是,则()A4B3CD8设曲线及直线所围成的封闭图形为区域,不等式组所确定的区域为,在区域内随机取一点,则该点恰好在区域内的概率为( )ABCD9下列命题正确的

3、是( )A若,则B“”是“”的必要不充分条件C命题“”、“”、“”中至少有一个为假命题D“若,则,全为0”的逆否命题是“若,全不为0,则”10九章算术是我国古代的数学名著,它在几何学中的研究比西方早一千多年,其中中有很多对几何体体积的研究已知某囤积粮食的容器是由同底等高的一个圆锥和一个圆柱组成,若圆锥的底面积为、高为,则该容器外接球的表面积为( )ABCD11已知直三棱柱中,底面为等腰直角三角形,点在上,且,则异面直线与所成角为( )ABCD12学生会为了调查学生对年俄罗斯世界杯的关注是否与性别有关,抽样调查人,得到如下数据:不关注关注总计男生301545女生451055总计7525100根据

4、表中数据,通过计算统计量,并参考以下临界数据:0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.845.0246.6357.87910.828若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13正三棱锥底面边长为1,侧面与底面所成二面角为45,则它的全面积为_14已知双曲线的左右焦点分别为,过点的直线交双曲线右支于两点,若是以为直角顶点的等腰三角形,则的面积为_15在(3x-2x)6的展开式中,16曲线在点

5、处的切线方程为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(I)求不等式;(II)若不等式的解集包含,求实数的取值范围.18(12分)已知数列的前项和为,且(1)求数列的通项公式;(2)求数列的前项和19(12分)设an是等差数列,a1=10,且a2+10,a3+8,a4+6成等比数列()求an的通项公式;()记an的前n项和为Sn,求Sn的最小值20(12分)实数m取什么值时,复数是:(1)实数;(2)纯虚数;(3)表示复数z的点在复平面的第四象限.21(12分)在中,内角,所对的边分别为,且.(1)证明:;(2)若,且的面积为,求.22(10分

6、)如图,已知单位圆上有四点,其中,分别设的面积为和.(1)用表示和;(2)求的最大值及取最大值时的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:由期望公式和方差公式列出的关系式,然后变形求解详解:,随机变量的值只能为,解得或,故选D点睛:本题考查离散型随机变量的期望与方差,解题关键是确定随机变量只能取两个值,从而再根据其期望与方差公式列出方程组,以便求解2、D【解析】分析: 由得椭圆的短轴长为,可得,可得,从而可得结果.详解:由得椭圆的短轴长为,解得,设,则,即, ,故选D.点睛:本题考查题意的简单性质,题意

7、的定义的有意义,属于中档题. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴、等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.3、D【解析】试题分析:的共轭复数为,故选D考点:1.复数的四则运算;2.共轭复数的概念4、A【解析】根据三段论定义即可得到答案.【详解】根据题意,符合逻辑推理三段论,于是完全正确,故选A.【点睛】本题主要考查逻辑推理,难度不大.5、A【解析】分析:根据题意求解,的对称中心点坐标的关系,即两个图象的交点的关系,即可解得答案详解:函数满足,即函数关于点对称函数即函数关于点对称函数与的图象共

8、有个交点即在两边各有个交点,则共有组,故,故选点睛:本题结合函数的对称性考查了函数交点问题,在解答此类题目时先通过化简求得函数的对称中心,再由交点个数结合图像左右各一半,然后求和,本题有一定难度,解题方法需要掌握。6、C【解析】试题分析:由题意可知发病的牛的头数为B(10,0.02),所以D()=100.02(1-0.02)=0.196;故选C考点:二项分布的期望与方差7、A【解析】由条件可得,【详解】因为函数的图象在点P处的切线方程是所以,所以4故选:A【点睛】本题考查的是导数的几何意义,较简单.8、C【解析】分析:求出两个区域的面积,由几何概型概率公式计算可得.详解:由题意,故选C.点睛:

9、以面积为测度的几何概型问题是几何概型的主要问题,而积分的重要作用正是计算曲边梯形的面积,这类问题巧妙且自然地将新课标新增内容几何概型与定积分结合在一起,是近几年各地高考及模拟中的热点题型预计对此类问题的考查会加大力度9、C【解析】分析:根据命题条件逐一排除求解即可.详解:A. 若,则,当a为0时此时结论不成立,故错误;B. “”是“”的必要不充分条件,当x=4时成立,故正确结论应是充分不必要;D. “若,则,全为0”的逆否命题是“若,全不为0,则”应该是若,不全为0,故错误,所以综合可得选C点睛:考查对命题的真假判定,此类题型逐一对答案进行排除即可,但注意思考的全面性不可以掉以轻心,属于易错题

10、.10、C【解析】首先求出外接球的半径,进一步利用球的表面积公式的应用求出结果【详解】根据已知条件,圆锥的底面积为8,所以r28,解得圆锥的底面半径为,由题外接球球心是圆柱上下底面中心连线的中点,设外接球半径为R,则,解得 所以表面积故选C【点睛】本题考查的知识要点:组合体的外接球的半径的求法及应用,球的表面积公式的应用,主要考察学生的运算能力和转化能力,属于基础题型11、C【解析】根据题意将直三棱柱补成长方体,由 ,然后再过点作直线的平行线,从而可得异面直线与所成角.【详解】由条件将直三棱柱补成长方体,如图.由条件,设点为的中点,连接.则,所以(或其补角)为异面直线与所成角.在中, 所以为等

11、边三角形,所以故选:C【点睛】本题考查异面直线所成角,要注意补形法的应用,属于中档题.12、A【解析】因为,所以若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过,故选A.【方法点睛】本题主要考查独立性检验的应用,属于中档题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:设正三棱锥P-ABC的侧棱长为2a,PO为三棱锥的高,做PD

12、垂直于AB,连OD,则PD为侧面的高,OD为底面的高的三分之一,在三角形POD中构造勾股定理,列出方程,得到斜高即可详解:设正三棱锥P-ABC的侧棱长为2a,PO为三棱锥的高,做PD垂直于AB,连OD,则PD为侧面的高,OD为底面的高的三分之一,在三角形POD中 故全面积为: 故答案为.点睛:这个题目考查了正三棱锥的表面积的求法,其中涉及到体高,斜高和底面的高的三分之一构成的常见的模型;正三棱锥还有一特殊性即对棱垂直,这一性质在处理相关小题时经常用到.14、【解析】设,根据双曲线的定义,有,即., ,故三角形面积为.点睛:本题主要考查双曲线的定义,考查直线与圆锥曲线的位置关系,考查数形结合的数

13、学思想方法和化归与转化的数学思想方法.解答直线与圆锥曲线位置关系题目时,首先根据题意画出曲线的图像,然后结合圆锥曲线的定义和题目所给已知条件来求解.利用题目所给等腰直角三角形,结合定义可求得直角三角形的边长,由此求得面积.15、1【解析】通过二项式定理通项公式即可得到答案.【详解】解:在(3x-2x)6的展开式中,通项公式为Tr+1=C6r(2)r36r令62r2,求得r2,可得x2的系数为C62434故答案为:1【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题16、【解析】试题分析:时直线方程为,变形得考点:导数的几何意义及直线方程三、解答题:共70分

14、。解答应写出文字说明、证明过程或演算步骤。17、()()【解析】()利用零点分类讨论法解不等式;()即在恒成立,即,即,再化为在恒成立解答即可.【详解】解:().当时,即,解得;当时,即,解得;当时,即,解得.综上,不等式的解集为.()对,恒成立,即在恒成立,即,在恒成立,.【点睛】本题主要考查绝对值不等式的解法,考查绝对值不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平,属于中档题.18、(1);(2)【解析】直接利用递推关系式,构造等比数列,求出数列的通项公式;利用的结论,进一步利用分组法求出数列的和【详解】(1)因为,所以,所以,即,所以,又所以是以2为首项,2为公比的等比数列所

15、以,即(2)因为,所以【点睛】本题考查了利用递推关系式求出数列的通项公式,等比数列的前n项和公式及分组求和的应用,主要考查学生的运算能力和转化能力,属于中档题19、();().【解析】()由题意首先求得数列的公差,然后利用等差数列通项公式可得的通项公式;()首先求得的表达式,然后结合二次函数的性质可得其最小值.【详解】()设等差数列的公差为,因为成等比数列,所以,即,解得,所以.()由()知,所以;当或者时,取到最小值.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.20、(1);(2);(3)【解析】由复数的解析式可得,(1)当虚部等于零时,复数为实数;(2)当虚部不等于零且实部为零时,复数为纯虚数;(3)当实部大于零且虚部小于零时,复数在复平面内对应的点位于第四象限【详解】解:复数,(1)当,即时,复数为实数(2)当,且时,即时,复数为纯虚数(3)当,且时,即时,表示复数的点在复平面的第四象限【点睛】本题主要考查复数的基本概念,属于基础题21、(1)见解析(2)2【解析】试题分析:(1)由,根据正弦定理可得 ,利用两角和的正弦公式展开化简后可得,所以,;(2)由,根据余弦定理可得,结合(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论