杆件的拉伸与压缩_第1页
杆件的拉伸与压缩_第2页
杆件的拉伸与压缩_第3页
杆件的拉伸与压缩_第4页
杆件的拉伸与压缩_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第2章杆件的拉伸与压缩杆件的拉伸与压缩是杆件的基本变形形式之一,也是最简单的一种变形形式。本章主要通过对于拉伸与压缩的研究,我们将对杆件变形与内力的关系以及材料基本力学性质的研究建立初步的概念。因此,对拉伸与压缩的研究具有重要的意义。本章将建立拉压杆内力的概念和应力、应变的概念,讨论截面法在求解拉压杆内力中的具体应用,研究应变与应力的关系及材料拉伸压缩时的力学性能,建立强度计算的基本概念,并对超静定问题的求解作初步的了解。2.1引言在实际工程中,我们经常会遇到承受轴向拉伸和轴向压缩的等直杆件。例如组成起重机塔架的杆件(图2.1),房屋的屋盖珩架中的杆件(图2.2)等。如图2.2(a)所示的房屋

2、的屋盖椅架,是由很多等直杆件绞接而成的。现取出拉杆和压杆来进行分析。拉杆的计算简图如图2.2(c),它是一根受拉的等直杆,由节点处传来的合力P,作用在杆件的两端,与杆的轴线重合,并且大小相等方向相反,它们使杆件产生轴向的伸长变形,我们称之为轴向拉伸;作用在压杆图2.2(b)两端的力P使杆产生轴向压缩变形,称为轴向压缩。图2.l图2.2(a)通过上述实例得知轴向拉伸和压缩具有如下特点:受力特点:作用于杆件两端的外力大小相等,方向相反,作用线与杆件轴线重合,即称轴向力。变形特点:杆件变形是沿轴线方向的伸长或缩2.2用截面法计算拉(压)杆的内力一、拉(压)杆内力的概念内力的概念:杆件在受到轴向拉力作

3、用时,会产生变形而伸长,同时,在杆件内任何截面处,截面两侧相连部分之间产生相互作用力,它的存在保证了截面两侧部分不被分开,这种作用力就是杆件的拉伸内力。类似地,杆件在受到轴向压力作用时,杆件内部会产生压缩内力。二、用截面法求轴力根据1.5节所介绍计算杆件内力的方法即截面法的原理和一般步骤,现在研究拉(压)杆的内力计算方法。图2.3(a)所示拉杆,两端各作用一轴向外力P,内力的计算步骤如下:在该杆任一横截面m-m处将其假想地切开,取其左半部分(或右半部分)为脱离体。对所取脱离体作受力分析,画出受力图。该脱离体除原来受到的外力P之外,在横截面m-m处还受到右半部分对它的作用力。我们已经指出,这种作

4、用力本来是分布在整个截面上的连续分布力,在计算内力时,只考虑它们的合力。设其合力为N,并设其方向为背离截面方向,即设其为拉力。则脱离体的受力分析如图2.3(b)的所示。(a)(b)(c)图2.3对所取脱离体列出平衡方程由平衡条件得送疋=0,由于卩沁(拉力),则N=P沙,如图2.3(b)所示。对B段也有:,N=p,N=N如图2.3(c)所示这样,即解得截面m-m处的内力。上述方法也同样适用于如图2.4所示的受压杆的内力计算,此时将求得N=-P,负号表明N的实际方向与所设方向相反。显然,为了保证脱离体的平衡,N的作用线必然与P的作用线重合,也就是说,内力N是沿杆件轴线作用的。因此我们把轴向拉(压)

5、杆的内力称为轴力。轴力的符号规定:规定拉力为正的轴力,而压力则为负的轴力。在用截面法计算轴力时,为了避免符号上的混乱,一般总是设轴力为拉力,如果计算结果为正值,表明实际轴力为拉力,与所设相同;如计算结果为负值,则表明实际轴力为压力。三、轴力图1、轴力图轴向拉(压)杆上各部分的轴力将依所受荷载而变化,可以用图形来直观地表明杆件上各截面处轴力的变化情况,这种图形叫做“轴力图”。该图一般以杆轴线为横坐标表示截面位置,纵轴表示轴力大小,以下通过一个例子来说明轴力图的作法。mm(a)m(b)P1NAm图2.42、举例图2.5(a)所示杆承受三个轴向外力。由于在截面B处作用有外力,当在B截面以左或以右用截

6、面截开杆件,截取的脱离体受力情况是不同的。也就是说,B截面以左和以右的杆段轴力是不同的,因而需要分段研究。用截面法先计算AB段的轴力。在AB段的任一横截面1-1处将杆切开,并选左段脱离体为研究对象,其受力情况如图2.5(b)所示。由平衡方程(a)(b)(c)(d)(e)图2.5由YX=0Ni-2P=0得,AB段的轴力为N=2P.对于BC段,仍用截面法,在任一横截面2-2处将其切开,仍选左段研究其平衡,如图2.5(c)所示,有YX=0,N+P-2P=0,N=P22实际上往往不需要先列平衡方程再求解,可直接求BC段上的轴力,N=2P-P=P.若2取2-2截面以右为脱离体,仍可得N=P,可见整个杆上

7、各截面处轴力不同.2结论:杆任一横截面上的轴力值等于该截面任一侧的杆上所有轴向外力的代数和,与内力(方向假定)方向相反的外力为正,相同的外力为负,即N=YPiii绘制轴力图:为表达截面位置选x轴为横坐标,相应截面上的轴力为纵坐标,根据适当比例,绘出轴力图,如图2.5(e),由图可知AB段的轴力值最大,N=2P.max例2.1绘制下图阶梯杆的轴力.解截面顺序从右往左排列,取截面以右的各段为隔离体.图2.6N=-3P1N=P-3P=-2P2N=4P+P-3P=2P3|N=3P(在第一段)max说明:绘轴力图时,中间直线和坐标箭头可以去掉.N3P剛x2P2P3P2P四、应力的概念前面已指出,轴力是截

8、面上分布内力的合力。为了研究拉(压)杆横截面、斜截面上内力分布规律,需要引进应力的概念。点的应力的概念:在外力作用下,杆件内力在截面上某点分布内力的集度称为该点的应力平均应力:如图2.7所示,在截面m-m上任取一点(K)的周围取一微小面积AA,设在AA上的分布内力的合力为AP,则AP与AA的比值芜代表AA内的分布内力的平均集度,称AA之为AA内的平均应力。当AA趋向于零时这个平均应力的极值就是K处的应力p,即P=limAP=dPAAtOAAdA(2.1)p是一个矢量,方向是AP的极限方向;p的单位:P(N-m-2),kP,MP.aaa五、横截面上的应力要确定拉(压)杆横截面上的内力分布规律,即

9、确定横截面上各点的应力,仅靠平衡条件是不能解决的。杆件在外力作用下不仅产生内力,而且引起变形,内力和变形之间总是相互关联的。要研究应力分布问题,除应利用平衡条件外,还应考虑杆件的变形,并利用内力和变形间的关系建立必要的补充条件。现通过试验观察拉(压)杆的变形情况:图2.8(a)为一等截面直杆,试验前,在杆件表面等问距地画上与杆轴平行的纵线以及与杆轴垂直的横线,然后,在杆件两端施加轴向外力P。由图2.8(b)可见,在施加外力之后,各纵、横线仍为直线,并分别平行和垂直于杆轴,只是横线间的距离增加,所有的原纵横线形成的正方形网格均变成大小相同的长方形。1、平面假设根据上述现象,对轴向拉(压)杆内部的

10、变形作如下假设:变形后,横截面仍保持为平面,并且仍垂直于杆轴,只是各横截面沿杆轴作相对平移,此假设称为平面假设。如果将杆件设想成由元数根纵向“纤维”所组成,则由平面假设可知,任意两横截面间的所有纤维的变形均相同。由于已经假定材料是均匀的,各纵向纤维变形相同,意味着受力也相同,由此可见,横截面上各点处的应力相等,其方向均垂直于横截面图2.8(c)。垂直于横截面的应力称为正应力或法向应力,用。表示。若拉(压)杆横截面积为A,轴力为N,则正应力为N1.o02.3强度条件与截面设计的基本概念本节将研究拉压杆的强度计算以及依据强度条件进行截面设计的方法。一、极限应力由前面的试验可知:当受拉杆横截面应力达

11、到强度极限时,会引起断裂;当应力达到屈b服应力时,将出现显著的塑性变形。显然,杆件工作时发生断裂或显著的塑性变形都是不允s许的。因此,为了杆件能够正常地和安全地工作,杆件内的最大应力必须有一个限制,具体来说就是不能超过材料的极限应力。对于塑性材料来说,极限应力一般是指材料的屈服应力;对于脆性材料来说,极限应力是指材料的强度极限。材料断裂(或处于危险状态)横截面上的应力称为极限应力,用&n表示,工作应力不能超过极限应力。即Q-&(2.16)maxn二、容许应力实际上,满足上述条件并不一定能够保证杆件工作的安全性。这是因为,作用在杆件上的荷载常常估计不准确;应力的计算通常都带有一定的近似性;材料也

12、并不像所假设的那样绝对均max匀等等。所有这些因素都有可能使杆件的实际工作条件比理想情况偏于不安全。除此之外,为提高安全度,杆件还应具有必要的强度储备,特别是那些因损坏会带来严重后果的杆件,更应有足够大的强度储备。因此,应将保证杆件安全工作的应力高限取为乙(2.17)n式中:L为材料在拉伸(压缩)许用应力,n称为安全系数(n1).对于低碳钢,拉伸的平均屈服极限为280MP240MP,材料出厂时97%的若能达到aa240MP,就认为合格,容许应力为280Mp,查表2.3知低碳钢t170Mp。aaa三、强度条件2.18)对等截面杆QJmax5maxA条件:容许拉应力=容许压应力。若截面大小不相等及

13、5鼻Q应同时满足:LY(5)Lmaxmax5L(5)Ymax|NmaxA5Y(2.19)四、应用上述条件可以解决的问题1、已知外力(算出内力)和材料种类(5已知),设计截面面积2.强度较核NmaxbA确定容许荷载;已知A和Q(杆材),确定杆能承受的最大轴力,即:NA5g)例2.3杆系结构如下图所示,已知杆AB、AC材料相同,0=160Mpa,横截面积分别为刈-706日mm2,血引4mm2,试确定此结构许可载荷P。解(1)由平衡条件计算实际轴力,设AB杆轴力为AC杆轴力为恥对于节点A,由=0得BCPP叽sin45=瑪sin30a)0330+cos45=Pb)由强度条件计算各杆容许轴力=706.9

14、x160 xlO6xlO=m】kNc)&b=314xl60 xlL灯0=50.3kNd)由于AB、AC杆不能同时达到容许轴力,如果将跖】,代入(2)式,解得显然是错误的。P=133.5正确的解应由(a)、(b)式解得各杆轴力与结构载荷P应满足的关系e)=0.518Pf)根据各杆各自的强度条件,即1彫,恥恥计算所对应的载荷的载荷冋,由(c)、(e)有MM=AM=H3.ikN0.732113.lkN(2.7)由(d)、(f)有0.518.P50.3kNES.lkN(h)要保证AB、AC杆的强度,应取(g)、(h)二者中的小值,即】.上述分析表明,求解杆系结构的许可载荷时,要保证各杆受力既满足平衡条

15、件又满足强度条件。2.4虎克定律一、拉(压)杆的变形与应变拉(压)杆变形的主要现象是纵向伸长(缩短)。此外,由实验得知,在杆件沿纵向伸长(缩短)时,其横向尺寸还会有缩小(增大)。下面研究如何计算这些变形。先引入线应变的概念.r寸锦1iJP1图2.12假设杆是受拉杆。如图2.12,设等直杆的原长为,横截面面积为川。在轴向力尸作用下,长度由变为1。杆件在轴线方向的伸长,即轴向变形为设杆横向变形为占,由于杆内各点轴向应力与轴向应变忙为均匀分布,所以一点轴向线应变即为杆件的伸长山除以原长/,即2.6)=&横向线应变可定义为=竺实验还表明,在弹性范围内凰为杆的横向线应变与轴向线应变代数值之比。由于且为反

16、映材料横向变形能力的材料弹性常数,为正值,所以,一般冠以负号,称为泊松比或横向变形系数,故有二、虎克定律由实验知,拉(压)杆受力在弹性限度内,杆的横截面正应力与纵向线应变成正比,即Qx8引入比例常数E,则有其纵向伸长因N(内力)二P,NI(2.8)(2.9)piEA称为抗拉(压)刚度.上式即为胡克定律.对于变截面杆,其微段的伸长为积分得对于直杆,轴力随x变化,dz二叫占,Al=EAn(x)dxPN(x)+dx当拉(压)杆有两个以上的外力作用时需要先画出轴力图,然后分段计算各段的变形,各avNL段变形的代数和即为杆的总伸长量乩二vat.ii2.5材料在拉伸或压缩时的力学性质一、材料的拉伸与压缩试

17、验材料的力学性能:也称机械性能。通过试验揭示材料在受力过程中所表现出的与试件几何尺寸无关的材料本身特性。如变形特性,破坏特性等。研究材料的力学性能的目的是确定在变形和破坏情况下的一些重要性能指标,以作为选用材料,计算构件强度、刚度的依据。因此材料力学试验是材料力学课程重要的组成部分。此处介绍用常温静载试验来测定材料的力学性能。试件和设备:标准试件:圆截面试件,如图2-16:标距/与直径山的比例分为l=10d(常用)0或l=5d0板试件(矩形截面):标距I与横截面面积貝的比例分为,l=113、区或l=5.6斯,00试验设备主要是拉力机或全能机及相关的测量、记录仪器。详细介绍见材料力学试验部分。国

18、家标准金属拉伸试验方法(如GB228-87)详细规定了实验方法和各项要求。图2.16图2.17压缩试块为短圆柱:二、低碳钢在拉伸时的力学性能根据材料拉伸试验中所得的P-Al关系可以得到拉伸图如下图一所示。如将纵坐标P除以试件横截面的原面积A,横坐标Al除以试件试验段原长1,所得到的曲线不再与杆件的长度和横截面面积有关,只反映材料的力学性能。此曲线叫材料的应力-应变曲线或o弋曲线。低碳钢是工程中广泛应用的金属材料,其应力-应变曲线也具有典型意义。1、拉伸图(p-)如图2.17a所示。弹性阶段,屈服(流动)阶段,强化阶段和局部变形阶段.由于P-M曲线与试样的尺寸有关,为了消除试件尺寸的影响,可采用

19、应力应变曲线,即万-曲线来代替P-以曲线。2、万-曲线图如图2.17b所示,其各特征点的含义为:1)弹性阶段应力-应变曲线的第一阶段。OA为一直线,此阶段内应力和应变成正比,即。这一阶段的最高点A所对应的应力称为材料的比例极限巧。比例极限是使应力与应变保持正比关系的最大应力值。Q235钢的比例极限b二200MP。在这一阶段内,试件的变形是完全弹性的,pa即将试件上的荷载撤去后,变形将完全消失。2)屈服阶段达到比例极限后继续加载,应力和应变之间不再保持正比关系。当到达B点时,图线出现水平(有微小波动)线段。在此阶段内,应力几乎不变,但变形却急剧增长,这种现象称为材料的屈服或流动。屈服时的应力称为

20、材料的屈服应力或屈服极限,用b表示。Q235钢的屈服应s力b240MPa。当材料屈服时,在试件表面将出现与试件轴线成45。的线纹(图2.18),此s线纹称为滑移线,它们是材料沿最大切应力面发生滑移而出现的。图2.18滑移线3)强化阶段经过屈服阶段之后,材料又增强了抵抗变形的能力。这时,要使材料继续变形需要增大拉力,这种现象称为强化。强化阶段的最高点D所对应的应力称为材料的强度极限,用Ob表示。b强度极限是材料所能承受的最大应力。Q235钢的强度极限O400MPa。b4)局部变形阶段经过强化阶段之后,在试件的某一局部范围内,横截面显著缩小(图2.19示),产生所谓颈缩现象。颈缩现象出现后,继续拉

21、伸所需外力减少,最后试件断裂。图2.19|:综上所述,在整个拉伸过程中,材料经历了弹性、屈服、强化和局部变形四个阶段,并存在三个特征点,其相应的应力依次为比例极限、屈服极限和强度极限。对低碳钢一类材料来说,屈服极限和强度极限是衡量其强度的主要指标。衡量材料塑性变形能力的另一指标是截面收缩率屮。设试件横截面的原面积为A,断裂后断口的横截面积为A1,截面收缩率为。3、延伸率和截面收缩率为度量材料塑性变形的能力,定义延伸率为二当x10000(2.14)l此处为试件标线间的标距,AZ为试验段的残余变形。0定义截面收缩率为屮二号X10000(2.15)工程上通常按延伸率的大小把材料分为两类3工5%-塑性

22、材料;x5%-脆性材料。结构钢和硬铝等属于塑性材料;铸铁和高碳工具钢等则属于脆性材料。延伸率是衡量材料塑性变形程度的重要标志。Q235钢的延伸率&约为20%30%。延伸率大的材料在轧制和冷压加工时不易断裂,并能抵抗较大的冲击荷载。4、卸载规律及冷作硬化试验表明,如果在弹性阶段内停止加载,并将荷载逐渐减小至零,即卸去荷载,则可以看到,在卸载过程中应力和应变之间仍保持正比关系,仍沿直线AO回到0点图2.20(a),变形完全消失。卸载后可以完全消失的变形称为弹性变形。这种只产生弹性变形的阶段,在应力-应变曲线上可延续到比稍高一些的M点(在AM段,应力与应变不再保持正比关系,但在外力撤除后变形仍可完全

23、消除),与M点相应的应力称为材料的弹性极限,用Oe表示。对于钢和其它金属材料,其弹性极限和比例极限相差不大。所以弹性阶段内的正比阶段(0A段)又常称为线性弹性阶段或线弹性阶段。在超过弹性极限之后,例如在强化阶段某一点C卸载,则卸载时的应力-应变曲线如图2.20(a)中CO1所示,CO1几乎平行于A0。线段OO代表卸载到应力等于零时的应变。强化阶段卸载和再加载卸载后遗留的变形称为塑性变形或残余变形。对c点来说,oq和OO分别代表塑性应变和弹性应变,而OO代表总应变。22如果卸载后立即重新加载,则应力、应变关系基本上沿卸载时的直线。0C变化,过C点后,仍沿曲线CDE变化,并至E点断裂。这样,如果将

24、卸载后已有塑性变形的试件当作一新试pp裂时残余变形则减少,这种现象称为冷作硬化。工程中常用冷作硬化来提高杆件在弹性范围内所能承受的最大荷载。三、其它材料在拉伸时的力学性能锰钢和强铝等材料的应力-应变曲线如图2.21所示。可以看出,它们与Q235钢的应力-应变曲线相比不存在线弹性阶段,而且断裂时材料没有明显的屈服阶段,有的材料不存在颈缩现象。对于没有明显屈服阶段的塑性材料,工程中通常以产生0.2%塑性应变时的应力作为名义屈服极限,并用O0。表示。如图2.22所示,在轴上取取OC=0.2%,自C点作直线平行于0A,并与应力-应变曲线相交D点,与D点对应的应力即为名义屈服应加。2。至于脆性材料,例如

25、铸铁等,从受拉到断裂,变形始终很小,既无屈服阶段,也无颈缩现象。图2.23为铸铁拉伸时的应力-应变曲线,断裂时的应变只不过0.4%-0.5%,断口则垂直于试件轴线。铸铁应力-应变曲线的另一特点是:当应力不大时,应力和应变间即开始不成正比。但是在实际使用的应力范围内,应力-应变曲线的曲率很小,因此,在实际计算时常把这一部分应力-应变曲线近似地以直线(图2.23中虚线)代替。衡量脆性材料强度的唯一指标是材料拉伸时的强度极限,它是试件被拉断时的真正应力。四、材料在压缩时的力学性能低碳钢压缩时的应力-应变曲线如图2.24所示。可以看出,在屈服阶段以前,压缩曲线与拉伸曲线基本重合,压缩时的屈服应力与拉伸

26、时的屈服应力大致相同。但是,随着压力继续增大,低碳钢试件将愈压愈“扁”,可以产生很大的塑性变形而不破裂故无法测出材料的抗压强度极限。铸铁拉伸、压缩时的应力-应变曲线如图2.25(a)所示,实线为压缩曲线,虚线为拉伸曲线。比较这两条曲线可知,铸铁压缩时的强度极限内与塑性指标都较拉伸时大,实验测定o-b4o的。故铸铁材料及其它脆性材料常用作受压构件。铸铁b试件受压破坏的断口为斜截面图2.25(b),与轴线大致成450角,这说明破坏是因斜截面上切应力使材料产生滑移所致。工程中常用的木材是各向异性的材料,其力学性能具有方向性,顺纹方向的强度比横纹方向高得多,而且其抗拉强度高于抗压强度。图2.26所示为桦木沿顺纹方向拉、压的应力-应变曲线。最后,为了便于查阅和比较,将几种常用材料在拉伸和压缩时的力学性能列于教材表2.2中。2-6温度和时间对材料力学性能的影响一、温度对材料力学性能的影响(短期,静载下)总趋势:温度升高,E、qS、ob下降;6、屮增大。但在260以前随温度的升高,ob反而增大,同时6、屮却减小。但象低碳钢这种在260以前的特征,并非所有的钢材都具有。F(kN)F(kN)二、蠕变与松驰(高温,长期静载下)1、蠕变:在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论