版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、全面介绍核苷酸定义一类由嘌呤碱或嘧啶碱基、核糖或脱氧核糖以及磷酸三种物质组勺什学核苷酸成的化合物。又称核苷酸。五碳糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。某些核苷酸的类似物能干扰核苷酸代谢,可作为抗癌药物。根据糖的不同,核苷酸有核糖核苷酸及脱氧核苷酸两类。根据碱基的不同又有腺嘌吟核苷酸(腺苷酸,AMP)、鸟嘌吟核苷酸(鸟苷酸,GMP)、胞嘧啶核苷酸(胞苷酸,CMP)、尿嘧啶核苷酸(尿苷酸,UMP)、胸腺嘧啶核苷酸(胸苷酸,TMP)及次黄嘌吟核苷酸(肌苷酸,I
2、MP)等。核苷酸中的磷酸又有一分子、两分子及三分子几种形式。此外,核苷酸分子内部还可脱水缩合成为环核苷酸。编辑本段合成核衽綾序列比对-1W4-嶽KJt-SEtJ核苷酸核苷酸是核糖核酸及脱氧核糖核酸的基本组成单位,是体内合成核酸的前身物。核苷酸随着核酸分布于生物体内各器官、组织、细胞的核及胞质中,并作为核酸的组成成分参与生物的遗传、发育、生长等基本生命活动。生物体内还有相当数量以游离形式存在的核苷酸。三磷酸腺苷在细胞能量代谢中起着主要的作用。体内的能量释放及吸收主要是以产生及消耗三磷酸腺苷来体现的。此外,三磷酸尿苷、三磷酸胞苷及三磷酸鸟苷也是有些物质合成代谢中能量的来源。腺苷酸还是某些辅酶,如辅
3、酶I、II及辅酶A等的组成成分。在生物体内,核苷酸可由一些简单的化合物合成。这些合成原料有天门冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。嘌吟核苷酸在体内分解代谢可产生尿酸,嘧啶核苷酸分解生成C02、卩一丙氨酸及卜氨基异丁酸等。嘌吟核苷酸及嘧啶核苷酸的代谢紊乱可引起临床症状(见嘌呤代谢紊乱、嘧啶代谢紊乱)。核苷酸类化合物也有作为药物用于临床治疗者,例如肿瘤化学治疗中常用的5-氟尿嘧啶及6-巯基嘌呤等。有些核苷酸分子中只有一个磷酸基,所以可称为一磷酸核苷(NMP)。5-核苷酸的磷酸基还可进一步磷酸化生成二磷酸核苷(NDP)及三磷酸核苷(NTP),其中磷酸之间是以高能键相连。脱氧核苷酸的情况也是
4、如此。体内还有一类环化核苷酸,即单核苷酸中磷酸部分与核糖中第三位和第五位碳原子同时脱水缩合形成一个环状二酯、即3,5-环化核苷酸,重要的有3,5-环腺苷酸(cAMP)和3,5-环鸟苷酸(cGMP)。编辑本段分布核苷酸是核酸的基本结构单位,人体内的核苷酸主要有机体细胞自身合成。核苷酸在体内的分布广泛。细胞中主要以5-核苷酸形式存在。细胞中核糖核苷酸的浓度远远超过脱氧核糖核苷酸。不同类型细胞中的各种核苷酸含量差异很大,同一细胞中,各种核苷酸含量也有差异,核苷酸总量变化不大。编辑本段功能核苷酸类化合物具有重要的生物学功能,它们参与了生物体内几乎所有的生物化学反应过程。现概括为以下五个方面:核苷酸是合
5、成生物大分子核糖核酸(RNA)及脱氧核糖核酸(DNA)的前身物,RNA中主要有四种类型的核苷酸:AMP、GMP、CMP和UMP,这四种类型的核苷酸从头合成前身物是磷酸核糖、氨基酸、一碳单位及二氧化碳等简单物质。DNA中主要有四种类型脱氧核苷酸:dAMP、dGMP、dCMP和dTMP,它们是由各自相应的核碳核苷酸在二磷酸水平上还原而1成的。三磷酸腺苷(ATP)在细胞能量代谢上起着极其重要的作用。物质在氧化时产生的能量一部分贮存在核苷酸ATP分子的高能磷酸键中。ATP分子分解放能的反应可以与各种需要能量做功的生物学反应互相配合,发挥各种生理功能,如物质的合成代谢、肌肉的收缩、吸收及分泌、体温维持以
6、及生物电活动等。因此可以认为ATP是能量代谢转化的中心。ATP还可将高能磷酸键转移给UDP、CDP及GDP生成UTP、CTP及GTP。它们在有些合成代谢中也是能量的直接来源。而且在某些合成反应中,有些核苷酸衍生物还是活化的中间代谢物。例如,UTP参与糖原合成作用以供给能量,并且UDP还有携带转运葡萄糖的作用。腺苷酸还是几种重要辅酶,如辅酶1(烟酰胺腺嘌吟二核苷酸,(NAD+)、辅酶II(磷酸烟酰胺腺嘌吟二核苷酸,NADP+)、黄素腺嘌吟二核苷酸(FAD)及辅酶A(CoA)的组成成分。NAD+及FAD是生物氧化体系的重要组成成分,在传递氢原子或电子中有着重要作用。CoA作为有些酶的辅酶成分,参与
7、糖有氧氧化及脂肪酸氧化作用。环核苷酸对于许多基本的生物学过程有一定的调节作用(见第二信使)。编辑本段代谢可从合成代谢、分解代谢及代谢调节三个方面讨论。合成代谢嘌呤核苷酸核苷酸主要由一些简单的化合物合成而来,这些前身物有天门冬氨酸、甘氨酸、谷氨酰胺、CO2及一碳单位(甲酰基及次甲基,由四氢叶酸携带)等。它们通过11步酶促反应先合成次黄嘌呤核苷酸(又称肌苷酸)。随后,肌苷酸又在不同部位氨基化而转变生成腺苷酸及鸟苷酸。合成途径的第一步是5-磷酸核糖在酶催化下,活化生成1-焦磷酸-5-磷酸核糖(PRPP),这是一个重要的反应。嘌呤核苷酸的从头合成主要是在肝脏中进行,其次是在小肠粘膜及胸腺中进行。嘌呤核
8、苷酸降解可产生嘌呤碱,嘌呤碱最终分解为尿酸,其中部分分解产物可被重新利用再合成嘌呤核苷酸,这称为回收合成代谢途径,可在骨髓及脾脏等组织中进行。嘌呤核苷酸降解产生的腺嘌呤、鸟嘌呤及次黄嘌呤在磷酸核糖转移酶的催化下,接受3-焦磷酸-5-磷酸核糖(PRPP)分子中的磷酸核糖,生成相应的嘌吟核苷酸。此合成途径也具有一定意义。嘧啶核苷酸的从头合成主要也在肝脏中进行。合成原料为氨基甲酰磷酸及天门冬氨酸等。氨基甲酰磷酸及天门冬氨酸经过数步酶促反应生成尿苷酸,尿苷酸转变为三磷酸尿苷后,从谷氨酰胺接受氨基生成三磷酸胞苷。上述体内合成的嘌吟及嘧啶核苷酸均系一磷酸核苷。它们均可在磷酸激酶的催化下,接受ATP提供的磷
9、酸基,进一步转变为二磷酸核苷及三磷酸核苷。体内还有一类脱氧核糖核苷酸。它们是dAMP、dGMP、dCMP及dTMP。它们组成中的脱氧核糖并非先生成而后组合到核苷酸分子中去,而是通过业已合成的核糖核苷酸的还原作用而生成的。此还原作用发生于二磷酸核苷分子水平上,dADP、dGDP、dCDP及dUDP均可由此而来,但dTMP则不同,它是由dUMP经甲基化作用而生成的。分解代谢嘌吟核苷酸在体内进行分解代谢,经脱氨基作用生成次黄嘌吟及黄嘌吟,再在黄嘌吟氧代酶催化下,经过氧化作用,最终生成尿酸。尿酸可随尿排出体外,正常人每日尿酸排出量为0.6g。嘧啶核苷酸在体内的分解产物为CO2,卩一丙氨酸及卩一氨基异丁
10、酸等。代谢调节核苷酸在体内的合成受到反馈性的调节作用。嘌吟核苷酸合成的终产物是AMP及GMP,它们可以反馈性地抑制由IMP转变为AMP及GMP的反应。它们可与IMP一齐反馈性地抑制合成途径的起始反应PRPP的生成。嘧啶核苷酸合成的产物CTP也可反馈性地抑制嘧啶合成的起始反应。编辑本段与医学的联系可从代谢异常所致疾病及作为药物两方面讨论。核苷酸核苷酸代谢的异常。GMP及IMP的回收合成需次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)参与。此酶遗传性缺乏则23岁时就可出现智力发育障碍、共济失调,敌对性及侵占性及自毁容貌的表现(莱施尼汉二氏综合征)。患儿嘌呤核苷酸的从头合成仍可正常进行,但回收合成的障
11、碍就可造成严重后果。嘌吟核苷酸分解代谢的终产物为尿酸。正常人血中尿酸含量约为26mg%,血中尿酸水平的升高(高尿酸血症)常见于痛风。血中尿酸含量超过8mg%时,尿酸就以钠盐形式沉积于关节、软组织、软骨及肾脏等处。原发性痛风症是一种先天代谢缺陷性疾病。患者体内的次黄嘌吟-鸟嘌吟磷酸核糖转移酶部分缺乏,致使IMP及GMP的回收合成减少,结果造成嘌吟核苷酸的从头合成加快。此外,患者体内的磷酸核糖焦磷酸激酶活性异常增高,以致大量地生成PRPP,促使从头合成加快,这些都造成尿酸的大量产生。原发性痛风症可用别嘌吟醇治疗。别嘌吟醇的结构与次黄嘌吟相似,是黄嘌吟氧化酶的抑制剂,可抑制次黄嘌吟及黄嘌吟转变为尿酸
12、的反应,降低血中尿酸水平。继发性痛风,可见于各种肾脏疾病、血液病及淋巴瘤等。患者细胞中核酸大量分解,因而尿酸生成增多。cAMP对细胞的一些生理活动有广泛的影响。cAMP的合成不足或作用失调与有些疾病过程有关。例如,支气管喘息及银屑病组织中cAMP量较低,又如糖尿病人各种代谢的异常与肝及脂肪组织中cAMP的生成过多也是有联系的。嘧啶合成障碍有乳清酸尿症,为乳清酸磷酸核糖转移酶及乳清酸核苷酸脱羧酶缺乏所致。核苷酸类似物的临床应用。核苷酸类似物6-巯基嘌吟(6MP)及5-氟尿嘧啶(5FU)用于肿瘤的化学治疗。6-巯基嘌吟的结构与次黄嘌吟相似,其一磷酸核苷对于AMP及GMP合成有关的几个酶有抑制作用,
13、从而选择性地阻止肿瘤的生长。5-氟尿嘧啶的结构与胸腺嘧啶相似,它在体内可转变为一磷酸脱氧核糖氟尿嘧啶核苷(5Fd-UMP)及三磷酸氟尿嘧啶(FUMP)。它们对于胸苷酸合成中的甲基化作用有较强的抑制作用,从而造成癌细胞的死亡。编辑本段嘌吟核苷酸代谢合成代谢体内嘌吟核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。嘌吟核苷酸的从头合成肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠粘膜和胸腺。嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。主要反应步骤分为两个阶段:首先合成次黄嘌吟核苷酸(IMP),然后IMP再
14、转变成腺嘌吟核苷酸(AMP)与鸟嘌吟核苷酸(GMP)。嘌吟环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供。嘌吟核苷酸从头合成的特点是:嘌吟核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌吟碱然后再与磷酸核糖结合的。反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶。PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反。从头合成的调节机制是反馈调节,主要发生在以下几个部位
15、:嘌吟核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP。2.嘌吟核苷酸的补救合成反应中的主要酶包括腺嘌吟磷酸核糖转移酶(APRT),次黄嘌吟-鸟嘌吟磷酸核糖转移酶(HGPRT)。嘌吟核苷酸补救合成的生理意义:节省从头合成时能量和一些氨基酸的消耗;体内某些组织器官,例如脑、骨髓等由于缺乏从头合成嘌吟核苷酸的酶体系,而只能进行嘌吟核苷酸的补救合成。3嘌吟核苷
16、酸的相互转变IMP可以转变成AMP和GMP,AMP和GMP也可转变成IMP。AMP和GMP之间可相互转变。脱氧核苷酸的生成体内的脱氧核苷酸是通过各自相应的核糖核苷酸在二磷酸水平上还原而成的。核糖核苷酸还原酶催化此反应。嘌吟核苷酸的抗代谢物嘌吟类似物:6-巯基嘌吟(6MP)、6-巯基鸟嘌吟、8-氮杂鸟嘌吟等。6MP应用较多,其结构与次黄嘌吟相似,可在体内经磷酸核糖化而生成6MP核苷酸,并以这种形式抑制IMP转变为AMP及GMP的反应。氨基酸类似物:氮杂丝氨酸和6-重氮-5-氧正亮氨酸等。结构与谷氨酰胺相似,可干扰谷氨酰胺在嘌吟核苷酸合成中的作用,从而抑制嘌吟核苷酸的合成。叶酸类似物:氨喋吟及甲氨
17、喋吟(MTX)都是叶酸的类似物,能竞争抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制了嘌吟核苷酸的合成。分解代谢分解代谢反应基本过程是核苷酸在核苷酸酶的作用下水解成核苷,进而在酶作用下成自由的碱基及1-磷酸核糖。嘌吟碱最终分解成尿酸,随尿排出体外。黄嘌吟氧化酶是分解代谢中重要的酶。嘌吟核苷酸分解代谢主要在肝、小肠及肾中进行。嘌吟代谢异常:尿酸过多引起痛风症,患者血中尿酸含量升高,尿酸盐晶体可沉积于关节、软组织、软骨及肾等处,导致关节炎、尿路结石及肾疾病。临床上常用别嘌吟醇治疗痛风症。1.从头合成途径(denovosynthesis):体内嘌吟核苷酸的合成代谢中,利用磷酸核糖、
18、氨基酸、一碳单位及CO2等简单物质为原料,经过一系列酶促反应,合成嘌吟核苷酸称为从头合成途径。2补救合成途径(salvagepathway):利用体内游离的嘌吟或嘌吟核苷,经过简单的反应过程,合成嘌吟核苷酸,称为补救合成途径。3自毁容貌症:又称(Lesch-Nyhan综合症),是由于某些基因缺乏而导致HGPRT完全缺失的患儿,表现为自毁容貌症。编辑本段嘧啶核苷酸代谢合成代谢1嘧啶核苷酸的从头合成肝是体内从头合成嘧啶核苷酸的主要器官。嘧啶核苷酸从头合成的原料是天冬氨酸、谷氨酰胺、C02等。反应过程中的关键酶在不同生物体内有所不同,在细菌中,天冬氨酸氨基甲酰转移酶是嘧啶核苷酸从头合成的主要调节酶;
19、而在哺乳动物细胞中,嘧啶核苷酸合成的调节酶主要是氨基甲酰磷酸合成酶II。主要合成过程:形成的第一个嘧啶核苷酸是乳氢酸核苷酸(OMP),进而形成尿嘧啶核苷酸(UMP),UMP在一系列酶的作用下生成CTP。dTMP由dUMP经甲基化生成的。嘧啶核苷酸从头合成的特点是先合成嘧啶环,再磷酸核糖化生成核苷酸。2嘧啶核苷酸的补救合成主要酶是嘧啶磷酸核糖转移酶,能利用尿嘧啶、胸腺嘧啶及乳氢酸作为底物,对胞嘧啶不起作用。嘧啶核苷酸的抗代谢物嘧啶类似物:主要有5-氟尿嘧啶(5-FU),在体内转变为FdUMP或FUTP后发挥作用。氨基酸类似物:同嘌吟抗代谢物。叶酸类似物:同嘌吟抗代谢物。阿糖胞苷:抑制CDP还原成
20、dCDP。分解代谢嘧啶核苷酸在酶作用下生成磷酸、核糖及自由碱基,产生的嘧啶碱进一步分解。胞嘧啶脱氨基转变成尿嘧啶,尿嘧啶最终生成NH3、CO2及卩-丙氨酸。胸腺嘧啶降解成卩-氨基异丁酸。编辑本段相关名词核苷酸核苷的磷酸酯,磷酸基与糖上的羟基连接。因为核糖有3个羟基,所以核糖核苷酸如腺嘌吟核苷酸(简称腺苷酸)。脱氧核糖有两个羟基,因而脱氧核糖核苷酸如腺嘌吟脱氧核糖核苷酸(简称脱氧腺苷酸)只有两种。核苷多磷酸含两个以上磷酸基的核苷酸。只带一个磷酸基的核苷酸,叫核苷一磷酸,带两个磷酸基的核苷酸叫核苷二磷酸,依此类推。如腺嘌吟核苷酸有腺苷一磷酸(即腺苷酸,AMP)、腺苷二磷酸(ADP)、腺苷三磷酸(A
21、TP)和脱氧腺苷一磷酸(即脱氧腺苷酸,dAMP)、脱氧腺苷二磷酸(dADP)、脱氧腺苷三磷酸(dATP)。天然的核苷多磷酸中,磷酸基多是与戊糖的5,-羟基相连。4种核苷三磷酸(ATP、GTP、CTP和UTP)、4种脱氧核苷三磷酸(dATP、dGTPdCTP和dTTP、分别是RNA和DNA生物合成的原料。寡核苷酸与多核苷酸220个核苷酸连接而成的化合物叫寡核苷酸。20个以上的核苷酸组成的化合物叫多核苷酸。核酸是一种多核苷酸。编辑本段重要的核苷酸衍生物腺苷酸衍生物核苷酸ADP和ATP是体内参与氧化磷酸化的高能化合物,ATP也是细胞内最丰富的游离核苷酸(如哺乳动物细胞中ATP浓度接近1毫克分子),水
22、解1克分子ATP约释放7000卡能量。腺苷-3,5-磷酸即环腺苷酸,主要存在于动物细胞中,生物体内的激素通过引起细胞内cAMP的含量发生变化,从而调节糖原、脂肪代谢、蛋白质和核酸的生物合成,所以cAMP被称为第二信使。2,5-寡聚腺苷酸,通常由3个腺苷酸通过2,5磷酸二酯键联接而成,即pppA(2)pA2PA,是干扰素发挥作用的一个媒介,具有抗病毒、抑制DNA合成和细胞生长、调节免疫反应等生物功能。几个重要的辅酶都是腺苷酸衍生物。ATP就是其中最重要的一个。此外,NA、NAD和FAD,可通过氢原子的得失参与许多氧化还原反应。辅酶A行使活化脂肪酸功能,与脂肪酸、萜类和类固醇生物合成有关。腺苷-3-磷酸-5-磷酰硫酸是硫酸根的活化形式,蛋白聚糖的糖组分中硫酸根的来源。甲硫氨酸被腺苷活化得到S-腺苷甲硫氨酸,它在生物体内广泛用作甲基供体。鸟苷酸衍生物HDkH,OPOHOHS-Kmt茁鹼悦氓iUI-3旳帯核苷酸在某些需能反应中,如蛋白质生物合成的起始和延伸,不能使用ADP和ATP,而要GDP和GTP参与反应。鸟苷-3,5-磷酸也是一个细胞信号分子,在某些情况下,cGMP与cAMP是一对相互制约的化合物,两者一起调节细胞内许多重要反应。鸟苷-3-二磷酸-5-二磷酸(ppGpp)和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二年级下册数学口算综合练习题 (每页100题)
- 《买玩具》幼儿园大班数学教案
- 《人教版新课标语文六年级上册教案(表格式)》
- 五金安全承诺书
- 湘教版四年级下册语文教案-《一单元-三单元》
- 旅游景区消防改造施工合同
- 供应链管理项目招投标授权书
- 国有企业市场营销策略
- 建筑设备租赁劳务分包协议
- 森林生态效益评估手册
- 心理应激与心身疾病-PPT课件
- 《中国古代文学史——第四编:隋唐五代文学》PPT课件(完整版)
- 第5章金融资产ppt课件
- 原油电脱水处理技术(行业知识)
- (高清正版)JJF(浙)1149-2018生物实验用干式恒温器校准规范
- 廉洁校园你我共塑PPT课件(带内容)
- 园林空间教学课件
- 同济大学教学质量保障体系
- 湘价服200981国家规范最新版
- 土地复垦方案编制规程第1部分通则
- 无领导小组讨论面试题目及面试技巧
评论
0/150
提交评论