版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 苏教版九年级数学知识点九班级下册数学学问点归纳 圆 重点圆的重要性质;直线与圆、圆与圆的位置关系;与圆有关的角的定理;与圆有关的比例线段定理。 内容提要 一、圆的基本性质 1.圆的定义(两种) 2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。 3.“三点定圆”定理 4.垂径定理及其推论 5.“等对等”定理及其推论 6.与圆有关的角:圆心角定义(等对等定理) 圆周角定义(圆周角定理,与圆心角的关系) 弦切角定义(弦切角定理) 二、直线和圆的位置关系 1.切线的性质(重点) 2.切线的判定定理(重点) 3.切线长定理 三、圆换圆的位置关系 1.五种位置关系及判定与
2、性质:(重点:相切) 2.相切(交)两圆连心线的性质定理 3.两圆的公切线:定义性质 四、与圆有关的比例线段 1.相交弦定理 2.切割线定理 五、与和正多边形 1.圆的内接、外切多边形(三角形、四边形) 2.三角形的外接圆、内切圆及性质 3.圆的外切四边形、内接四边形的性质 4.正多边形及计算 中心角:学校数学复习提纲 内角的一半:学校数学复习提纲(右图) (解RtOAM可求出相关元素,学校数学复习提纲、学校数学复习提纲等) 六、一组计算公式 1.圆周长公式 2.圆面积公式 3.扇形面积公式 4.弧长公式 5.弓形面积的计算(方法) 6.圆柱、圆锥的侧面绽开图及相关计算 七、点的轨迹 六条基本
3、轨迹 八、有关作图 1.作三角形的外接圆、内切圆 2.平分已知弧 3.作已知两线段的比例中项 4.等分圆周:4、8;6、3等分 九、重要帮助线 1.作半径 2.见弦往往作弦心距 3.见直径往往作直径上的圆周角 4.切点圆心莫忘连 5.两圆相切公切线(连心线) 6.两圆相交公共弦 初三数学学问点 1、二次根式:形如式子为二次根式; 性质:是一个非负数; 2、二次根式的乘除: 3、二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并. 4、海伦-秦九韶公式:,S是的面积,p为. 1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程. 2:配方法将
4、方程的一边配成完全平方式,然后两边开方; 因式分解法:左边是两个因式的乘积,右边为零. 1:一元二次方程在实际问题中的应用 2:韦达定理设是方程的两个根,那么有 3:一个图形绕某一点转动一个角度的图形变换 性质:对应点到中心的距离相等; 对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等. 2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称; 中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形; 3关于原点对称的点的坐标 1圆、圆心、半径、直径、圆弧、弦、半圆的定义 2垂直于弦的直径 圆是图形
5、,任何一条直径所在的直线都是它的对称轴; 垂直于弦的直径平分弦,并且平方弦所对的两条弧; 平分弦的直径垂直弦,并且平分弦所对的两条弧. 3弧、弦、圆心角 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 4圆周角 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; 半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径. 5点和圆的位置关系 点在圆外dr 点在圆上d=r 点在圆内dR+r 外切d=R+r 相交R-r 九班级(数学(学习方法)技巧 自学力量的培育是深化学习的必由之路 在学习新概念、新运算时,老师们总是通过已有学问自然而然过渡到新学问,水
6、到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。 我们在课堂上听老师讲解,不光是学习新学问,更重要的是潜移默化老师的那种数学思维习惯,渐渐地培育起自己对数学的一种悟性。我去佛山一中开家长会时,一中校长的一番话使我感受良多。他说:我是教物理的,同学物理学得好,不是我教出来的,而是他们自己悟出来的。当然,校长是虚心的,但他说明白一个道理,同学不能被动地学习,而应主动地学习。一个班里几十个同学,同一个老师教,差异那么大,这就是学习主动性问题了。 自学力量越强,悟性就越高。随着年龄的增长,同学们的依靠性应不断减弱,而自学力量则应不断增加。因此,要养成预习的习惯。在老师讲新课前,能不能运用自己所学过的已把握的旧学问去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学学问的无冲突性,你所学过的数学学问永久都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,遇到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是由于没有预习,没有带着问题学,没有将“要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全技术服务承包责任书
- 信报箱采购合作协议
- 购销合同的合同纠纷
- 汽车保养加盟合同范本
- 家庭养老全程陪伴
- 施工单位分包合同范本
- 还建房购买合同协议书
- 抖音服务合同签订流程详解
- 购销合同样式设计指南
- 艺人签约演出代理
- 2024年度校园体育设施维修保养合同
- 不良行为学生教育转化工作实施方案(五篇)
- 机电一体化项目职业技能大赛试题(SX-815Q)
- 校园招聘策划方案
- 护理学专业大学生职业规划书
- 2025年春九年级语文下册 第三单元综合测试卷(人教陕西版)
- 行政人员的培训
- 专科护理质量监测指标
- 创意与创新:大脑永动机(2023下)学习通超星期末考试答案章节答案2024年
- 2024年1月浙江省高考英语真题试卷含答案
- 中医基础理论之八纲辨证课件
评论
0/150
提交评论