2023学年河北省定兴县达标名校中考数学全真模拟试题含答案解析_第1页
2023学年河北省定兴县达标名校中考数学全真模拟试题含答案解析_第2页
2023学年河北省定兴县达标名校中考数学全真模拟试题含答案解析_第3页
2023学年河北省定兴县达标名校中考数学全真模拟试题含答案解析_第4页
2023学年河北省定兴县达标名校中考数学全真模拟试题含答案解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023年河北省定兴县达标名校中考数学全真模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知二次函数(

2、m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是Ax11,x21Bx11,x22Cx11,x20Dx11,x232如图,ABC内接于O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于( )A3:1B4:1C5:2D7:23已知点A、B、C是直径为6cm的O上的点,且AB=3cm,AC=3 cm,则BAC的度数为()A15B75或15C105或15D75或1054如图,在O中,O为圆心,点A,B,C在圆上,若OA=AB,则ACB=()A15B30C45D605已知地球上海洋面积约为361 000 000km2,361 00

3、0 000这个数用科学记数法可表示为( )A3.61106B3.61107C3.61108D3.611096如图,ABC在平面直角坐标系中第二象限内,顶点A的坐标是(2,3),先把ABC向右平移6个单位得到A1B1C1,再作A1B1C1关于x轴对称图形A2B2C2,则顶点A2的坐标是()A(4,3)B(4,3)C(5,3)D(3,4)7如图,菱形ABCD的边长为2,B=30动点P从点B出发,沿 B-C-D的路线向点D运动设ABP的面积为y(B、P两点重合时,ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为( )ABCD8某厂进行技术创新,现在每天比原来多生产30台

4、机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同设现在每天生产x台机器,根据题意可得方程为()ABCD9一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字16)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()ABCD10我市连续7天的最高气温为:28,27,30,33,30,30,32,这组数据的平均数和众数分别是( )A28,30B30,28C31,30D30,30二、填空题(共7小题,每小题3分,满分21分)11受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展预计达州市2018年快递业务量将达到5

5、.5亿件,数据5.5亿用科学记数法表示为_12如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_(结果保留)13如图,在ABC中,A60,若剪去A得到四边形BCDE,则12_14不等式2x50,nn-1,M1,0N1,0PPN.点睛:本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b0,那么ab; 如果a-b=0,那么a=b; 如果a-b0,那么ab,bc,那么abc.三、解答题(共7小题,满分69分)18、(1)详见解析;(2).【答案解析】(1)连接OD,由平

6、行线的判定定理可得ODAC,利用平行线的性质得ODE=DEA=90,可得DE为O的切线;(2)连接CD,求弧DC与弦DC所围成的图形的面积利用扇形DOC面积-三角形DOC的面积计算即可【题目详解】解:(1)证明:连接OD,ODOB,ODBB,ACBC,AB,ODBA,ODAC,ODEDEA90,DE为O的切线;(2)连接CD,A30,ACBC,BCA120,BC为直径,ADC90,CDAB,BCD60,ODOC,DOC60,DOC是等边三角形,BC4,OCDC2,SDOCDC,弧DC与弦DC所围成的图形的面积【答案点睛】本题考查的知识点是等腰三角形的性质、切线的判定与性质以及扇形面积的计算,解

7、题的关键是熟练的掌握等腰三角形的性质、切线的判定与性质以及扇形面积的计算.19、(1)详见解析;(2)6【答案解析】(1)连接CD,证明即可得到结论;(2)设圆O的半径为r,在RtBDO中,运用勾股定理即可求出结论.【题目详解】(1)证明:连接CD,.(2)设圆O的半径为,设.【答案点睛】本题综合考查了切线的性质和判定及勾股定理的综合运用综合性比较强,对于学生的能力要求比较高20、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.【答案解析】(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出

8、关于x的一元二次方程,解之取其正值即可得出结论;(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题【题目详解】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=2.375(不合题意,舍去)答:2018至2020年寝室数量的年平均增长率为37.5%(2)解:设双

9、人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(1216y)间,单人间的数量在20至30之间(包括20和30), ,解得:15 y16 根据题意得:w=2y+20y+1216y=16y+121,当y=16时,16y+121取得最大值为1答:该校的寝室建成后最多可供1名师生住宿【答案点睛】本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式21、0k且 k1【答案解析】根据二次项系数非零、被开方数非负及根的判别式0,即可得出关于 k 的一元一次不等式组,解之即可

10、求出 k 的取值范围【题目详解】解:关于 x 的一元二次方程(k1)x2+x+30 有实数根,2k0,k-10,=()2-43(k-1)0,解得:0k且 k1k 的取值范围为 0k且 k1【答案点睛】本题考查了根的判别式、二次根式以及一元二次方程的定义,根据二次项系数非零、被开方数非负及根的判别式0,列出关于 k 的一元一次不等式组是解题的关键当0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0时,一元二次方程没有实数根.22、(1)DE与O相切,证明见解析;(2)AC=8.【答案解析】(1)解:(1)DE与O相切证明:连接OD、AD,点D是的中点,=,DA

11、O=DAC,OA=OD,DAO=ODA,DAC=ODA,ODAE,DEAC,DEOD,DE与O相切(2) 连接BC,根据ODF与ABC相似,求得AC的长AC=823、(1)(10,7500)(2)直线BC的解析式为y=-250 x+10000,自变量x的取值范围为10 x40.(3)1250米.【答案解析】(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.【题目详解】(1)9000-15010=7500.点B的坐标为(10,7500)(2)设直

12、线BC的解析式为y=kx+b,依题意,得:解得: 直线BC的解析式为y=-250 x+10000,乙队是10天之后加入,40天完成,自变量x的取值范围为10 x40.(3)依题意,当x=35时,y=-25035+10000=1250.乙队工作25天后剩余管线的长度是1250米.【答案点睛】本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.24、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2)【答案解析】分析:(4)过点B作BHOA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在AHB中运用三角函数求出BH即可 (2)过点B作BHOA于H

13、,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MNOC设圆的半径为r,则MN=MB=MD=r在RtBHD中运用勾股定理可求出r=2,从而得到点D与点H重合易证AFGADB,从而可求出AF、GF、OF、OG、OB、AB、BG设OR=x,利用BR2=OB2OR2=BG2RG2可求出x,进而可求出BR在RtORB中运用三角函数就可解决问题 (4)由于BDE的直角不确定,故需分情况讨论,可分三种情况(BDE=90,BED=90,DBE=90)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题详解:(4)过点B作BHOA于H,

14、如图4(4),则有BHA=90=COA,OCBH BCOA,四边形OCBH是矩形,OC=BH,BC=OH OA=6,BC=2,AH=0AOH=OABC=62=4 BHA=90,BAO=45,tanBAH=4,BH=HA=4,OC=BH=4 故答案为4 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2) 由(4)得:OH=2,BH=4 OC与M相切于N,MNOC 设圆的半径为r,则MN=MB=MD=r BCOC,OAOC,BCMNOA BM=DM,CN=ON,MN=(BC+OD),OD=2r2,DH= 在RtBHD中,BHD=90,BD2=BH2

15、+DH2,(2r)2=42+(2r4)2 解得:r=2,DH=0,即点D与点H重合,BD0A,BD=AD BD是M的直径,BGD=90,即DGAB,BG=AG GFOA,BDOA,GFBD,AFGADB,=,AF=AD=2,GF=BD=2,OF=4,OG=2 同理可得:OB=2,AB=4,BG=AB=2 设OR=x,则RG=2x BROG,BRO=BRG=90,BR2=OB2OR2=BG2RG2,(2)2x2=(2)2(2x)2 解得:x=,BR2=OB2OR2=(2)2()2=,BR= 在RtORB中,sinBOR= 故答案为 (4)当BDE=90时,点D在直线PE上,如图2 此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t 则有2t=2 解得:t=4则OP=CD=DB=4 DEOC,BDEBCO,=,DE=2,EP=2,点E的坐标为(4,2) 当BED=90时,如图4 DBE=OBC,DEB=BCO=90,DBEOBC,=,BE=t PEOC,OEP=BOC OPE=BCO=90,OPEBCO,=,OE=t OE+BE=OB=2t+t=2 解得:t=,OP=,OE=,PE=,点E的坐标为() 当DBE=90时,如图4 此时PE=PA=6t,OD=OC+BCt=6t 则有OD=PE,EA=(6t)=6t,BE=BAEA=4(6t)=t2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论