![数据分析实验三_第1页](http://file4.renrendoc.com/view/c5713320ddc3111f0ddc434fe77c1c37/c5713320ddc3111f0ddc434fe77c1c371.gif)
![数据分析实验三_第2页](http://file4.renrendoc.com/view/c5713320ddc3111f0ddc434fe77c1c37/c5713320ddc3111f0ddc434fe77c1c372.gif)
![数据分析实验三_第3页](http://file4.renrendoc.com/view/c5713320ddc3111f0ddc434fe77c1c37/c5713320ddc3111f0ddc434fe77c1c373.gif)
![数据分析实验三_第4页](http://file4.renrendoc.com/view/c5713320ddc3111f0ddc434fe77c1c37/c5713320ddc3111f0ddc434fe77c1c374.gif)
![数据分析实验三_第5页](http://file4.renrendoc.com/view/c5713320ddc3111f0ddc434fe77c1c37/c5713320ddc3111f0ddc434fe77c1c375.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、中北大学理学院实验报告实验课程:数据分析专 业:信息与计算科学班 级: 13080241学 号:1308024101姓 名: 潘娟中北大学理学院实验三美国50个州七种犯罪比率的数据分析【实验目的】通过使用SAS软件对实验数据进行主成分分析和因子分析,熟 悉数据分析方法,培养学生分析处理实际数据的综合能力。【实验内容】表3给出的是美国50个州每100 000个人中七种犯罪的比率数据。这七种犯罪是:Murder (杀人罪),Rape (强奸罪),Robbery (抢劫罪), Assault(斗殴罪),Burglary (夜盗罪),Larceny (偷盗罪),Auto (汽车犯罪)。表3美国50个州
2、七种犯罪的比率数据StateMurderRapeRobberyAssaultBurglaryLarcenyAutoAlabama14.225.296.8278.31135.51881.9280.7Alaska10.851.696.8284.01331.73369.8753.3Arizona9.534.2138.2312.32346.14467.4439.5Arkansas8.827.683.2203.4972.61862.1183.4California11.549.4287.0358.02139.43499.8663.5Colorado6.342.0170.7292.91935.23903.
3、2477.1Connecticut4.216.8129.5131.81346.02620.7593.2Delaware6.024.9157.0194.21682.63678.4467.0Florida10.239.6187.9449.11859.93840.5351.4Georgia11.731.1140.5256.51351.12170.2297.9Hawaii7.225.5128.064.11911.53920.4489.4Idaho5.519.439.6172.51050.82599.6237.6Illinois9.921.8211.3209.01085.02828.5528.6Indi
4、ana7.426.5123.2153.51086.22498.7377.4Iowa2.310.641.289.8812.52685.1219.9Kansas6.622.0100.7180.51270.42739.3244.3Kentucky123.3872.21662.1245.4Louisiana15.530.9142.9335.51165.52469.9337.7Maine2.413.538.7170.01253.12350.7246.9Maryland8.034.8292.1358.91400.03177.7428.5Massachusetts3.120.8169
5、.1231.61532.22311.31140.1Michigan9.338.9261.9274.61522.73159.0545.5Minnesota2.719.585.985.81134.72559.3343.1Mississippi14.319.665.7189.1915.61239.9144.4Missouri9.628.3189.0233.51318.32424.2378.4Montana5.416.739.2156.8804.92773.2309.2Nebraska3.918.164.7112.7760.02316.1249.1Nevada15.849.1323.1355.0245
6、3.14212.6559.2New Hampshire3.210.723.276.01041.72343.9293.4New Jersey5.621.0180.4185.11435.82774.5511.5New Mexico8.839.1109.6343.41418.73008.6259.5New York10.729.4472.6319.11728.02782.0745.8North Carolina10.617.061.3318.31154.12037.8192.1Ohio7.827.3190.5181.11216.02696.8400.4North Dakota0.99.013.343
7、.8446.11843.0144.7Oklahoma8.629.273.8205.01288.22228.1326.8Oregon4.939.9124.1286.91636.435061388.9Pennsylvania5.619.0130.3128.0877.51624.1333.2Rhode Island3.610.586.5201.01489.52844.1791.4South Carolina11.933.0105.9485.31613.62342.4245.1South Dakota2.013.517.9155.7570.51704.4147.5Tennessee10.129.714
8、5.8203.91259.71776.5314.0Texas13.333.8152.4208.21603.12988.7397.6Utah3.520.368.8147.31171.63004.6334.5Vermont1.415.930.8101.21348.22201.0265.2Virginia9.023.392.1165.7986.22521.2226.7Washington4.339.6106.2224.81605.63386.9360.3West Virginia6.013.242.290.9597.41341.7163.3Wisconsin2.812.952.263.7846.92
9、614.2220.7Wyoming5.421.939.7173.9811.62772.2282.01、1)分别用样本协方差矩阵和样本相关矩阵作主成分分析,二者的结果有何差异?2)原始数据的变化可否由三个或者更少的主成分反映,对所选取的主成分给 出合理的解释。3)计算从样本相关矩阵出发计算的第一样本主成分的得分并予以排序.2、从样本相关矩阵出发,做因子分析。【实验所使用的仪器设备与软件平台】SAS软件【实验方法与步骤】(阐述实验的原理、方案、方法及完成实验的具体步骤等,附上自己编写的程序)1.1)主成分分析样本协方差矩阵proc princomp data=work.crime covarian
10、ce;run;样本相关矩阵proc princomp data=work.crime;run;3)计算从样本相关矩阵出发计算的第一样本主成分的得分并予以排序.proc princomp data=crime out=defen; run;proc sort data=defen;by prinl;run;proc print data=defen;run;2.从样本相关矩阵出发,做因子分析。proc factor data=work.crime score; run;【实验结果】1.1)分别用样本协方差矩阵和样本相关矩阵作主成分分析,二者的结果有何差 异?样本协方差矩阵各变量的均值及其标准差:
11、The PRINCOMP ProcedureUbserYat i ons50Ya r i abIes7Si rnp I e Stat ist icsMurderRapeRobberyAssau1tBurglaryLa rcenyAutoMean7.44400000025.73400000124.0920000211.30000001291.9040003302.386000377.5260000StD3.86676894110.7596299588.3485672100.2530492432.4557114638.575008193.3944175样本协方差矩阵:Covar i ance Ma
12、t r i :::MurderRapeRobberyAssauItBurg 1 aryLarcenyAutoMurderMurder14.9525.01165.25251.41645.17-1352.2051.46RapeRape25.01115.77562.64798.513313.5913918.15726.01RobberyRobbery165.25562.647805.474934.1624347.0028655.9210092.42AssauItAssauIt251.41798.514934.1610050.6727006.2078112.075348.14Burg I aryBn
13、rg I a ry645.173313.5924347.0027006.20187017.94470512.9946664.15LarcenyLa rceny-1352.2013918.1528655.9278112.07470512.9921516378.1169681.55AutoAuto51.46726.0110092.425348.1446664.1569681.5537401.40样本协方差矩阵的特殊指标:特征值、差额、贡献率、累计贡献率Total Variance 21758784.312EigenvaIues of the Covariance MatrixEigenvalueD
14、ifferenceProport ionCumulat ive121527321.621330145.00.98940.98942197176.6172678.30.00910.9984324498.417744.00.00110.999646754.33765.70.00030.999952988.62950.10.00011.0000638.532.20.00001.000076.30.00001.0000可以得出主成分为Murder (杀人罪)。EigenvectorsPrinlPrin2PrinSPrin4Prin5Print;Prin?MurderMurder-.0000620.11
15、03595-.0059000.0253860.0039770.1574100.987175RapeRape0.0006500.016206-.0089080.047612-.0041490.986021-.158545RobberyRobbery0.0013590.1359900.1319940.4646410.864629-.021719-.011675Assau1tAssau1t0.0036580.137992-.1138860.863075-.469548-.049145-.013649BurglaryBurglary0.0220560.940376-.281253-.189782-.0
16、03217-.0086720.001172LarcenyLarceny0.999743-.0223620.0033410.0004230.001205-.0002470.000188AutoAuto0.0032910.2781780.943599-.016789-.1785960.0048160.005010Larceny (偷盗罪)与Murder (杀人罪)高度相关,Burglary (夜盗罪)与Rape(强奸罪)高度相关,Robbery (抢劫罪)与Auto (汽车犯罪)高度相关,Robbery (抢劫罪)与Larceny (偷盗罪)高度相关,Murder (杀人罪)与Auto(汽车犯罪)
17、高度相关。样本相关矩阵201606月01日 星期三 上午。8时58分02杪12The PRINCOMP Procedure507Ubservat i ons Va r i abIesS i mpIe Stat i st i csMurderRapeRobberyAssauItBurglaryLa rcenyiutoilean7.444000UUU25.73400000124.0920000211.30000001291.9040003302.386000377.5260000StD3.86676894110.7596299588.3485672100.2530492432.4557114638
18、.575008193.3944175Correlation Matri:MurderRapeRobberyAssau1tBurglaryLarcenyAutoMurderMurder1.00000.60120.48370.64860.3858-.07540.0688RapeRape0.60121.00000.59190.74080.71210.27890.3489RobberyRobbery0.48370.59191.00000.55710.63720.06990.5907Assau1tAssau1t0.64860.74030.55711.00000.62290.16800.2758Burgl
19、aryBurglary0.38580.71210.68720.62291.00000.23460.5580LarcenyLa rceny-.07540.27890.06990.1680LI.284E:1.00000.0777AutoAuto0.0G880.34890.59070.27580.55800.07771.0000EigenvaIues of the Correlat ion MatrixEigenva1ueDifferenceProport ionCumulat ive13.707457882.563374880.52960.529621.144083000.123506800.16
20、340.693131.020576200.635575110.14580.838940.385001100.107103210.05500.893950.277897890.023078740.03970.933660.254819150.044654370.03640.970070.210164780.03001 .0000可以看出主成分为Murder(杀人罪),Rape(强奸罪),Robbory(抢劫罪)。E i genvectorsPrin1Prin2Prin8Prin4PrinbPrint;Prin7MurderMurder0.348772-.5882470.0863510.36738
21、20.0734860.5017910.364284RapeRape0.456744-.0687280.222472-.238040-.1561600.305460-.750208RobberyRobbery0.4242980.071135-.3022560.596935-.389075-.446584-.128080Assau1tAssauIt0.435534-.2336390.189765-.2236540.580589-.5736570.059380BurglaryBurglary0.4421700.208589-.045298-.531074-.4613850.0289600.51300
22、1LarcenyLarceny0.1222050.5453330.7360500.3412020.0651340.0621920.146218AutoAuto0.2992940.498695-.5214010.0596400.5144240.348818-.002066各成分间没有很高的相关性,没有两个成分的相关度达到0.9以上。Robbory(抢劫罪)与Larceny(偷盗罪)的相关系数为0.736050Rape(强奸罪)与Auto (汽车犯罪)的相关系数为0.750208两者的差别:主成分发生了变化。用样本协方差矩阵求得主成分为Murder (杀人罪)用样本相关矩阵求得主成分为Murder
23、(杀人罪),Rape(强奸罪),Robbory(抢劫 罪)。各成分间的相关系数不不相同。所以由样本协方差矩阵,样本相关矩阵求得的主成分一般是不同的。2)原始数据的变化可否由三个或者更少的主成分反映,对所选取的主成分给出 合理的解释。用样本协方差矩阵求出的主成分Murder (杀人罪),它的贡献率为98.94% 可以用它来代替其他六个变量,其信息损失量是很小的。用样本相关矩阵求出的主成分为Murder(杀人罪),Rape(强奸罪), Robbory(抢劫罪)。Murder(杀人罪)的贡献率为52.96%,Murder(杀人罪)和 Rape(强奸罪)的累计贡献率为69.31%,Murder(杀人罪
24、),Rape(强奸罪), Robbory(抢劫罪)三个的累计贡献率为83,89%。可以用这三个主成分来代替7个 原始变量,而且也不至于损失原始变量中的太多信息。3)计算从样本相关矩阵出发计算的第一样本主成分的得分并予以排序.ObsStateMurder RapeRobberyAssauItBurglaryLarceny1North Dakota0.99.013.343.8446.11843.02South Dakota2.013.517.9155.7570.51704.43Iowa2.310.641.209.8812.52685.14West Virginia6.013.242.290.959
25、7.41341.75Wisconsin2.812.952.263.7846.92614.26New Hampsh i re3.210.723.276.01041.72343.97Nebraska3.918.164.7112.7760.02316.18Vermont1.415.930.8101.21348.22201.09Maine2.413.538.7170.01253.12350.710Montana5.416.739.2156.8804.92773.211Minnesota2.719.585.905.81134.72559.312Wyoming5.421.939.7173.9811.627
26、72.213Idaho5.519.439.6172.51050.82599.614Utah3.520.368.8147.31171.63004.615Pennsylvania5.619.0130.3128.0877.51624.116Kentucky123.3872.21662.117Virginia9.023.392.1165.7986.22521.218Mississippi14.319.665.7109.1915.61239.919Kansas6.622.0100.7100.51270.42739.320Arkansas8.827.683.2203.4972.61
27、862.121Connect i cut4.216.8129.5131.81346.02620.722Indiana7.426.5123.2153.51086.22498.723Rhode Island3.610.586.5201.01489.52844.124North Carol ina10.617.061.3318.31154.12037.825Ok 1ahoma8.629.273.8205.01288.22228.126New Jersey5.621.0180.4105.11435.82774.527Hawai i7.225.5128.064.11911.53920.428Ohio7.
28、827.3190.5101.11216.02696.829Tennessee10.129.7145.8203.91259.71776.530Alabama14.225.296.8278.31135.51881.931Delaware6.024.9157.0194.21682.63678.4ObsAutoPrinlPrin2Prin3Prin4Prin5PrinBPrin71144.7-3.823930.223660.054570.23310-0.10104-0.30195-0.435182147.5-2.89759-0.178570.32568-0.142600.35512-0.68348-0
29、.442533219.9-2.782710.385370.003040.05178-0.13318-0.307630.032344163.3-2.67195-0.603510.100050.49798-0.038560.10048-0.098085220.7-2.666000.37462-0.042280.13374-0.39222-0.08091-0.073776293.4-2.504580.52545-0.21564-0.23965-0.171990.125300.388427249.1-2.125890.066200.025020.19190-0.05399-0.09270-0.4345
30、98265.2-2.034240.77178-0.10537-0.92618-0.57322-0.175530.219579246.9-1.830710.405540.05359-0.75603-0.10085-0.584880.4025210309.2-1.82994-0.045980.106080.091730.480910.05630-0.0655411343.1-1.654750.77129-0.35036-0.16310-0.492570.03598-0.2407712282.0-1.56779-0.185670.31673-0.074770.422750.05493-0.41050
31、13237.6-1.50014-0.201140.33222-0.327650.07754-0.060930.0513314334.5-1.327430.53535-0.05106-0.37274-0.11351-0.11003-0.1020615333.2-1.320780.01118-0.462730.57334-0.14641-0.11540-0.3065516245.4-1.30764-0.927200.042560.65897-0.100240.588790.1748117226.7-0.88129-0.768870.322250.35070-0.144300.25240-0.049
32、9918144.4-0.81874-2.024220.5280.680600.100310.664420.6361819244.3-0.72378-0.214820.19776-0.14301-0.37654-0.170330.1546720183.4-0.68403-1.056640.522080.05518-0.062910.09002-0.3698621593.2-0.620121.24230-1.121460.053270.090190.136450.3027522377.4-0.45853-0.05824-0.197140.29525-0.134910.32650-0.3598423
33、791.4-0.388221.78449-1.50096-0.407941.137590.071210.9639724192.1-0.38399-1.417540.62093-0.150060.71097-0.493090.8593525326.8-0.12809-0.482700.22429-0.382710.010600.43253-0.1013026511.50.128880.76888-0.841330.19421-0.17061-0.264200.2118327489.40.170271.04480-0.57074-0.34414-1.225701.035790.6537628400
34、.40.228150.01087-0.393840.57096-0.34999-0.04416-0.2991929314.00.30859-0.75340-0.014440.23550-0.301580.25268-0.1477830280.70.39952-1.694610.412050.377550.533710.411980.5236831467.00.465950.75472-0.41693-0.20279-0.43204-0.006970.330642.从样本相关矩阵出发,做因子分析。烬系统2016The FACTOR ProcedureInput Data TypeNumber of Records ReadNumber of Records UsedN for Sign if icance TestsRaw Data505050Eigenvalues of theCorre 1 at ion Matrix: Total = 7Average = 1EigenvalueDifferenceProport ionCumulat ive13.707457882.563374880.52960.529621.144083000
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店改造补贴合同协议书
- 2025年度科技园区办公室租赁合同(科技企业版)
- 住宅精装修合同书
- 循环经济与废物资源化管理作业指导书
- 三农村基层智慧城市建设与发展方案
- 网络安全与数据保护技术作业指导书
- 房地产行业销售与租赁管理系统方案
- 国际能源领域科技创新及投资协议
- 出租车承包合同协议书年
- 软件能力评价与提升作业指导书
- GB/T 6403.4-2008零件倒圆与倒角
- 电力公司主要应急物资清单
- 2023年初中道法九年级上册知识点汇总(思维导图)
- 《篮球主修》考核方式
- Unit 3 Times change单元教学设计
- 科室医院感染风险评估表
- 山东省食用油(植物油)生产企业名录496家
- 《智慧农业》的ppt完整版
- GB∕T 33047.1-2016 塑料 聚合物热重法(TG) 第1部分:通则
- 经济学市场失灵与政府失灵课件
- 电力业务许可证豁免证明
评论
0/150
提交评论