版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列说法:将一组数据中的每个数据都乘以同一个非零常数后,标准差也变为原来的倍;设有一个回归方程,变量增加个单位时
2、,平均减少个单位;线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;在某项测量中,测量结果服从正态分布,若位于区域的概率为,则位于区域内的概率为 在线性回归分析中,为的模型比为的模型拟合的效果好;其中正确的个数是( )A1B2C3D42若函数f(x)=x2lnx与函数A(-,1e2-1e3 “,”的否定是A,B,C,D,4半径为2的球的表面积为( )ABCD5设等差数列的公差为d,若数列为递减数列,则( )ABCD6随机变量的分布列如下: -101若,则的值是( )ABCD7命题“”的否定是()ABCD8若,满足,.则()ABCD9双曲线的渐近线方程为,则其离心率为( )ABC
3、D10函数的值域是ABCD11展开式中第5项的二项式系数为( )A56B70C1120D-112012已知定义域为的函数满足,当时,单调递减,如果且,则的值( )A等于0B是不等于0的任何实数C恒大于0D恒小于0二、填空题:本题共4小题,每小题5分,共20分。13已知数列是正项数列,是数列的前项和,且满足.若,是数列的前项和,则_.14正弦曲线上一点,正弦曲线以点为切点的切线为直线,则直线的倾斜角的范围是_.15若二项式展开式的常数项为,则实数的值为_16在1,2,3,80这八十个数中,随机抽取一个数作为数,将分别除以3,5,7后所得余数按顺序拼凑成一个具有三位数字的数,例如,时,时,若,则_
4、.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了月日至月日的每天昼夜温差与实验室每天每颗种子中的发芽数,得到如下资料:日期月日月日月日月日月日温差发芽数(颗)该农科所确定的研究方案是:先从这组数据中选取组,用剩下的组数据求线性回归方程,再对被选取的组数据进行检验.(1)求选取的组数据恰好是不相邻两天数据的概率;(2)若选取的是月日与月日的数据,请根据月日至月日的数据求出关于的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗.则认为得到的线
5、性回归方程是可靠的.试问(2)中所得到的线性回归方程是可靠的吗?附:回归直线的斜率和截距的最小二乘估计公式分别为:,.18(12分)数列满足).(1)计算,并由此猜想通项公式;(2)用数学归纳法证明(1)中的猜想.19(12分)已知函数()求的单调区间;()求在区间上的最值20(12分)选修4-4:坐标系与参数方程直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为=2(sin+cos),直线l的参数方程为:()写出圆C和直线l的普通方程;()点P为圆C上动点,求点P到直线l的距离的最小值21(12分)已知函数(1)当时,解不等式;(2)若存在实数解,求实数a取值范围
6、22(10分)在平面直角坐标系中,已知曲线的参数方程为(为参数).以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.点为曲线上的动点,求点到直线距离的最大参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】逐个分析,判断正误将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍;设有一个回归方程,变量增加个单位时,平均减少个单位;线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱;服从正态分布,则位于区域内的概率为;在线性回归分析中,为的模型比为的模
7、型拟合的效果好【详解】将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍,错误;设有一个回归方程,变量增加个单位时,平均减少个单位,正确;线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱,错误;服从正态分布,则位于区域内的概率为,错误;在线性回归分析中,为的模型比为的模型拟合的效果好;正确故选B.【点睛】本题考查的知识点有标准差,线性回归方程,相关系数,正态分布等,比较综合,属于基础题2、B【解析】通过参数分离得到a=lnx2x-x2lnx【详解】若函数f(x)=x2lnx2ln设t=t=lnxxt=1-lnx画出图像:a=t2-a=t2
8、-t1t2=故答案为B【点睛】本题考查了函数的零点问题,参数分离换元法是解题的关键.3、D【解析】通过命题的否定的形式进行判断【详解】因为全称命题的否定是特称命题,故“, ”的否定是“, ”.故选D.【点睛】本题考查全称命题的否定,属基础题.4、D【解析】根据球的表面积公式,可直接得出结果.【详解】因为球的半径为,所以该球的表面积为.故选:D【点睛】本题主要考查球的表面积,熟记公式即可,属于基础题型.5、C【解析】试题分析:因为是等差数列,则,又由于为递减数列,所以,故选C.考点:1.等差数列的概念;2.递减数列.6、D【解析】由题设可得,所以由随机变量的方差公式可得,应选答案D。7、A【解析
9、】根据全称命题的否定形式书写.【详解】根据全称命题的否定形式可知“”的否定是“”.故选A.【点睛】本题考查全称命题的否定形式,属于简单题型.8、A【解析】利用指数函数和对数函数的单调性即可比较大小.【详解】,故选:A.【点睛】本题考查了指数函数和对数函数的单调性,考查了计算能力和推理能力,属于基础题.9、B【解析】根据渐近线得到,得到离心率.【详解】双曲线的渐近线方程为,则,.故选:.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力.10、A【解析】分析:由于函数在上是减函数,且,利用单调性求得函数的值域详解:函数在上是减函数,且,当时,函数取得最小值为当时,函数取得最大值为故函数的值
10、域为故选点睛:本题主要考查的是指数函数的单调性,求函数的值域,较为基础。11、B【解析】分析:直接利用二项展开式的通项公式求解即可.详解:展开式的通项公式为则展开式中第5项的二项式系数为点睛:本题考查二项展开式的通项公式,属基础题.12、D【解析】由且,不妨设,则,因为当时,单调递减,所以 ,又函数满足,所以,所以,即.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用将变为,整理发现数列为等差数列,求出,进一步可以求出,再将,代入,发现可以裂项求的前99项和。【详解】当时,符合,当时,符合,【点睛】一般公式的使用是将变为,而本题是将变为,给后面的整理带来方便。先求,
11、再求,再求,一切都顺其自然。14、【解析】由可得,直线的斜率为,即可求出答案.【详解】由可得,切线为直线的斜率为:设直线的倾斜角,则且.所以故答案为:【点睛】本题考查求曲线上的切线的倾斜角的范围,属于中档题.15、【解析】先求出二项式的展开式的通项公式,令的指数等于0,求出的值,即可求得展开式中的常数项,结合常数项为列方程求解即可.【详解】二项式展开式的通项为,令,得, 常数项为,得,故答案为.【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考
12、查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.16、49【解析】由的个位数字为0,所以一定是7的倍数,它可能的取值为7,14,21,28,35,42,49,56,63,70,77,再分别求出它们所对应的数,可知。【详解】由的个位数字为0,所以一定是7的倍数,它可能的取值为7,14,21,28,35,42,49,56,63,70,77,它们所对应的数分别为120,240,010,130,200,020,140,210,030,100,220,故。【点睛】本题主要考查合情推理,列举找规律。三、解答题:共70分。解答应写出文字说明、证明过程或演
13、算步骤。17、(1);(2);(3)见解析【解析】分析:(1)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是可能出现的,满足条件的事件包括的基本事件有6种根据等可能事件的概率做出结果(2)根据所给的数据,先求出,即求出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程(3)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的详解:(1)设“选取的2组数据恰好是不相邻两天的数据”为事件A.从5组数据中选取2组数据共有10种情况:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),其中数据为12月份的日期数每种情况都是等可能出现的,事件A包括的基本事件有6种.选取的2组数据恰好是不相邻两天数据的概率是. (2)由数据可得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024沙盘制作合同
- 2024机器设备修理合同范文
- 2024建筑工程施工扩大劳务分包合同
- 2024影视剧聘用未成年演员合同
- 《微喜帖用户指南》课件
- 深圳大学《中国法律思想史》2023-2024学年第一学期期末试卷
- 深圳大学《药理学实验》2022-2023学年第一学期期末试卷
- 泵站管理员合同(2篇)
- 副高职称评审述职报告(13篇)
- 核电站拆迁协议书(2篇)
- 应力的概念讲解
- JF-2023-合同中小学校校外供餐合同示范文本
- 入团答辩-演讲模板
- 聂树斌案-演讲模板
- 只争朝夕不负韶华岗位竞聘述职报告
- 配料个人述职报告
- 农场工作制度与农民岗位职责
- 2024年山东公务员考试行测真题及解析【完美打印版】
- 茶百道选址策略分析报告
- 田赛裁判法与规则2
- 社区心肺复苏术普及
评论
0/150
提交评论