




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、浙江省温州市苍南县市级名校2023学年中考冲刺卷数学测试卷注意事项1考生要认真填写考场号和座位序号。2测试卷所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A25:24B16:15C5:4D4:32如图,三棱柱ABCA1B1C1的侧棱长和底面边长均为2,且侧棱AA1底面ABC,其正
2、(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )ABCD43已知点M (2,3 )在双曲线上,则下列一定在该双曲线上的是( )A(3,-2 )B(-2,-3 )C(2,3 )D(3,2)4已知方程的两个解分别为、,则的值为()ABC7D35若正六边形的半径长为4,则它的边长等于( )A4B2CD6在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球则两次摸出的小球的标号的和等于6的概率为()ABCD7在RtABC中C90,A、B、C的对边分别为a、b、c,c3a,tanA的值为()ABCD38如图所示,在长方形纸
3、片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A16cmB20cmC24cmD28cm9图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是()A0B1CD10某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )A50.560.5 分B60.570.5 分C70.580.5 分D80.590.5 分二、填空题(本大题共6个小题,每小题3分,共18分)11已知二次函数y=x2,当x0时,y随x的增大而_(填“
4、增大”或“减小”)12如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为_.13如图,AB为O的直径,BC为O的弦,点D是劣弧AC上一点,若点E在直径AB另一侧的半圆上,且AED=27,则BCD的度数为_14如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是_15如图,中,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_16在直径为10m的圆柱形油槽内装入一些油后,截面如图所
5、示如果油面宽AB=8m,那么油的最大深度是_三、解答题(共8题,共72分)17(8分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)1064每吨土特产利润(万元)0.70.80.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元(1)求y与x之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值18(8分)已知关于x的分式方程
6、=2和一元二次方程mx23mx+m1=0中,m为常数,方程的根为非负数(1)求m的取值范围;(2)若方程有两个整数根x1、x2,且m为整数,求方程的整数根19(8分)如图,在ABC,AB=AC,以AB为直径的O分别交AC、BC于点D、E,且BF是O的切线,BF交AC的延长线于F(1)求证:CBF=CAB (2)若AB=5,sinCBF=,求BC和BF的长20(8分)如图,已知在中,是的平分线(1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹)(2)判断直线与的位置关系,并说明理由21(8分)如图,矩形ABCD中,CEBD于E,CF平分DCE与DB交于点F求证:BFBC;若AB4c
7、m,AD3cm,求CF的长22(10分)一位运动员推铅球,铅球运行时离地面的高度(米)是关于运行时间(秒)的二次函数已知铅球刚出手时离地面的高度为米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面如图建立平面直角坐标系()为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标根据题意可知,该二次函数图象上三个点的坐标分别是_;()求这个二次函数的解析式和自变量的取值范围23(12分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5(1)求BC的长;(2)如果两条对角线长的和是20,求三角形AOD的周长24
8、已知二次函数的图象如图6所示,它与轴的一个交点坐标为,与轴的交点坐标为(0,3)求出此二次函数的解析式;根据图象,写出函数值为正数时,自变量的取值范围2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、A【答案解析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出RtAHERtCFG,再由勾股定理及直角三角形的面积公式即可解答【题目详解】1=2,3=4,2+3=90,HEF=90,同理四边形EFGH的其它内角都是90,四边形EFGH是矩形,EH=FG(矩形的对边相等),又1+4=90,4+5=90,1=5(等量代换),同理
9、5=7=8,1=8,RtAHERtCFG,AH=CF=FN,又HD=HN,AD=HF,在RtHEF中,EH=3,EF=4,根据勾股定理得HF=5,又HEEF=HFEM,EM=,又AE=EM=EB(折叠后A、B都落在M点上),AB=2EM=,AD:AB=5:=25:1故选A【答案点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等2、B【答案解析】分析:易得等边三角形的高,那么左视图的面积=等边三角形的高侧棱长,把相关数值代入即可求解详解:三棱柱的底面为等边三角形,边长为2,作出等边三角形的
10、高CD后,等边三角形的高CD=,侧(左)视图的面积为2,故选B点睛:本题主要考查的是由三视图判断几何体解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度3、A【答案解析】因为点M(-2,3)在双曲线上,所以xy=(-2)3=-6,四个答案中只有A符合条件故选A4、D【答案解析】由根与系数的关系得出x1x25,x1x22,将其代入x1x2x1x2中即可得出结论【题目详解】解:方程x25x20的两个解分别为x1,x2,x1x25,x1x22,x1x2x1x2521故选D【答案点睛】本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x1x25,x1x22本题属于基础题,难
11、度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键5、A【答案解析】测试卷分析:正六边形的中心角为3606=60,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1故选A考点:正多边形和圆6、C【答案解析】列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可解:共16种情况,和为6的情况数有3种,所以概率为故选C7、B【答案解析】根据勾股定理和三角函数即可解答.【题目详解】解:已知在RtABC中C=90,A、B、C的对边分别为a、b、c,c=3a,设a=x,则c=3x,b=2x.即tanA=.故选B.
12、【答案点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.8、C【答案解析】首先根据平行线的性质以及折叠的性质证明EAC=DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角ADF中利用勾股定理求解【题目详解】长方形ABCD中,ABCD,BAC=DCA,又BAC=EAC,EAC=DCA,FC=AF=25cm,又长方形ABCD中,DC=AB=32cm,DF=DC-FC=32-25=7cm,在直角ADF中,AD=24(cm)故选C【答案点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键9、C【答案解析】测试卷分析: 本题考查了勾股定理、展开图折叠
13、成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键由正方形的性质和勾股定理求出AB的长,即可得出结果解:连接AB,如图所示:根据题意得:ACB=90,由勾股定理得:AB=;故选C考点:1.勾股定理;2.展开图折叠成几何体10、C【答案解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.580.5分这一分组内,据此可得详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.580.5分这一分组内,所以中位
14、数落在70.580.5分故选C点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数二、填空题(本大题共6个小题,每小题3分,共18分)11、增大【答案解析】根据二次函数的增减性可求得答案【题目详解】二次函数y=x2的对称轴是y轴,开口方向向上,当y随x的增大而增大.故答案为:增大.【答案点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.12、.【答案解析】设正六边形ABCDEF的
15、边长为4a,则AA1AF1FF12a求出正六边形的边长,根据S六边形GHIJKI:S六边形ABCDEF()2,计算即可;【题目详解】设正六边形ABCDEF的边长为4a,则AA1AF1FF12a,作A1MFA交FA的延长线于M,在RtAMA1中,MAA160,MA1A30,AMAA1a,MA1AA1cos30=a,FM5a,在RtA1FM中,FA1,F1FLAFA1,F1LFA1AF120,F1FLA1FA,FLa,F1La,根据对称性可知:GA1F1La,GL2aaa,S六边形GHIJKI:S六边形ABCDEF()2,故答案为:【答案点睛】本题考查正六边形与圆,解直角三角形,勾股定理,相似三角
16、形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题13、117【答案解析】连接AD,BD,利用圆周角定理解答即可【题目详解】连接AD,BD,AB为O的直径,ADB=90,AED=27,DBA=27,DAB=90-27=63,DCB=180-63=117,故答案为117【答案点睛】此题考查圆周角定理,关键是根据圆周角定理解答14、【答案解析】根据几何概率的求法:球落在黑色区域的概率就是黑色区域的面积与总面积的比值【题目详解】解:由图可知黑色区域与白色区域的面积相等,故球落在黑色区域的概率是=【答案点睛】本题考查几何概率的求法:首先根据题意将代数关系
17、用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率15、【答案解析】首先证明CAA是等边三角形,再证明ADC是直角三角形,在RtADC中利用含30度的直角三角形三边的关系求出CD、AD即可解决问题【题目详解】在RtACB中,ACB=90,B=30,A=60,ABC绕点C逆时针旋转至ABC,使得点A恰好落在AB上,CA=CA=2,CAB=A=60,CAA为等边三角形,ACA=60,BCA=ACB -ACA=90-60=30,ADC=180-CAB-BCA=90,在RtADC中,ACD=30,AD=CA=1,CD=AD=,故答
18、案为:【答案点睛】本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键16、2m【答案解析】本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决【题目详解】解:过点O作OMAB交AB与M,交弧AB于点E连接OA在RtOAM中:OA=5m,AM=12根据勾股定理可得OM=3m,则油的最大深度ME为5-3=2m【答案点睛】圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直
19、角三角形的问题三、解答题(共8题,共72分)17、 (1)y=3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元【答案解析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30 x(1x+1)=(123x)辆,从而可以得到y与x的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数【题目详解】(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30 x(1x+1)=(123x)
20、辆,根据题意得:y=100.7x+40.5(1x+1)+60.8(123x)=3.4x+141.1(1)根据题意得:,解得:7x,x为整数,7x210.60,y随x增大而减小,当x=7时,y取最大值,最大值=3.47+141.1=117.4,此时:1x+1=12,123x=1答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元【答案点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.18、(1)且,;(2)当m=1时,方程的整数根为0和3.【答案解析】(1)先解出分式方程的解,根据分式的意义和方程的根为非负数得出的取
21、值;(2)根据根与系数的关系得到x1+x2=3,根据方程的两个根都是整数可得m=1或.结合(1)的结论可知m1.解方程即可.【题目详解】解:(1)关于x的分式方程的根为非负数,且.又,且,解得且.又方程为一元二次方程,.综上可得:且,. (2)一元二次方程有两个整数根x1、x2,m为整数, x1+x2=3,为整数,m=1或.又且,m1.当m=1时,原方程可化为.解得:,. 当m=1时,方程的整数根为0和3.【答案点睛】考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.19、(1)证明略;(2)BC=,BF=.【答案解析】测试卷分析:(1)连结AE.
22、有AB是O的直径可得AEB=90再有BF是O的切线可得BFAB,利用同角的余角相等即可证明;(2)在RtABE中有三角函数可以求出BE,又有等腰三角形的三线合一可得BC=2BE,过点C作CGAB于点G.可求出AE,再在RtABE中,求出sin2,cos2.然后再在RtCGB中求出CG,最后证出AGCABF有相似的性质求出BF即可.测试卷解析:(1)证明:连结AE.AB是O的直径, AEB=90,1+2=90.BF是O的切线,BFAB, CBF +2=90.CBF =1. AB=AC,AEB=90, 1=CAB.CBF=CAB. (2)解:过点C作CGAB于点G.sinCBF=,1=CBF, s
23、in1=.AEB=90,AB=5. BE=ABsin1=.AB=AC,AEB=90, BC=2BE=.在RtABE中,由勾股定理得.sin2=,cos2=.在RtCBG中,可求得GC=4,GB=2. AG=3.GCBF, AGCABF. ,.考点:切线的性质,相似的性质,勾股定理.20、(1)见解析;(2)与相切,理由见解析【答案解析】(1)作出AD的垂直平分线,交AB于点O,进而利用AO为半径求出即可;(2)利用半径相等结合角平分线的性质得出ODAC,进而求出ODBC,进而得出答案【题目详解】(1)分别以为圆心,大于的长为半径作弧,两弧相交于点和,作直线,与相交于点,以为圆心,为半径作圆,如
24、图即为所作;(2)与相切,理由如下:连接OD,为半径,是等腰三角形,平分,为半径,与相切【答案点睛】本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键21、(1)见解析,(2)CFcm.【答案解析】(1)要求证:BF=BC只要证明CFB=FCB就可以,从而转化为证明BCE=BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角BCD中,根据三角形的面积等于BDCE=BCDC,就可以求出CE的长要求CF的长,可以在直角CEF中用勾股定理求得其中EF=BF-BE,BE在直角BCE中根据勾股定理就可以求出,由此解决
25、问题【题目详解】证明:(1)四边形ABCD是矩形,BCD90,CDB+DBC90CEBD,DBC+ECB90ECBCDBCFBCDB+DCF,BCFECB+ECF,DCFECF,CFBBCFBFBC(2)四边形ABCD是矩形,DCAB4(cm),BCAD3(cm)在RtBCD中,由勾股定理得BD又BDCEBCDC,CEBEEFBFBE3CFcm【答案点睛】本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题22、(0,),(4,3)【答案解析】测试卷分析:()根据“刚出手时离地面高度为米、经过4秒到达离地面3米的高度和经过1秒落到地面”可得三点坐标;()利用待定系数法求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国食品产业园行业现状调研及发展潜力分析报告
- 2025-2030年中国随车起重机市场前景趋势及发展潜力分析报告
- 2025-2030年中国防火门行业发展策略规划分析报告
- 2025-2030年中国钻机电控系统市场十三五规划与发展策略研究报告
- 2025-2030年中国训练健身器材行业需求现状及发展趋势分析报告
- 2025-2030年中国组合电器产业发展趋势及前景调研分析报告
- 武汉体育学院《机制设计理论及应用》2023-2024学年第二学期期末试卷
- 鄂尔多斯职业学院《功能表面设计》2023-2024学年第二学期期末试卷
- 大同师范高等专科学校《研究性学习指导与管理》2023-2024学年第二学期期末试卷
- 合肥职业技术学院《社会企业》2023-2024学年第二学期期末试卷
- 川教版信息技术六年级下册全册教案【新教材】
- 2024-2025学年统编版语文九年级下册第7课《溜索》任务驱动型教学设计
- (国赛)5G组网与运维赛项备考试题库及答案
- 代写文章合同模板
- 初中体育与健康 50米加速跑及途中跑 教案
- 自考00808商法押题及答案解析
- 2024年国考公务员行测真题及参考答案
- 2.2.1藻类、苔藓和蕨类课件人教版生物七年级上册2024新教材
- 2024-2025学年新教材高中政治 第1单元 民事权利与义务 第1课 第1框 认真对待民事权利与义务教案 新人教版选择性必修2
- 常见化疗药物及运用
- 自动识别技术及应用(高职)全套教学课件
评论
0/150
提交评论