版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若函数为奇函数,则ABCD2函数f(x)=sin(x+A关于直线x=12对称B关于直线C关于
2、点12,0对称D3 “已知函数,求证:与中至少有一个不少于.”用反证法证明这个命题时,下列假设正确的是( )A假设且B假设且C假设与中至多有一个不小于D假设与中至少有一个不大于4已知随机变量满足,则下列说法正确的是( )A,B,C,D,5在长为的线段上任取一点现作一矩形,领边长分别等于线段的长,则该矩形面积小于的概率为()A B C D6已知O是的两条对角线的交点若,其中,则( )A-2B2CD7在一次试验中,测得的四组值分别是A(1,2),B(3,4),C(5,6)D(7,8),则y与x之间的回归直线方程为()ABCD8若定义域为的偶函数满足,且当时,则函数在上的最大值为( )A1BCD9双
3、曲线C:的左、右焦点分别为、,P在双曲线C上,且是等腰三角形,其周长为22,则双曲线C的离心率为()ABCD10设函数, ( )A3B6C9D1211分子为1且分母为正整数的分数称为单位分数,1可以分拆为若干个不同的单位分数之和:1=12+13+16,A228B240C260D27312的内角的对边分别为,若的面积为,则ABCD二、填空题:本题共4小题,每小题5分,共20分。13现有3位男学生3位女学生排成一排照相,若男学生站两端,3位女学生中有且只有两位相邻,则不同的排法种数是_(用数字作答)14已知,则方程恰有2个不同的实根,实数取值范围_.15不等式的解集为_16已知某几何体的俯视图是如
4、图所示的矩形,正视图是一个底边长为8.高为4的等腰三角形,侧视图是一个底边长为6.高为4的等腰三角形,则该几何体的体积为_;侧面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知一个口袋中有个红球和个白球(,),这些球除颜色外完全相同现将口袋中的球随机地逐个摸出(不放回),直到红球全部被摸出为止(1)当,时,试求“摸球次数为5”的概率;(2)随机变量表示摸球次数,是的数学期望写出的概率分布列,并求18(12分)已知函数,.(1)解关于的不等式;(2)若函数在区间上的最大值与最小值之差为5,求实数的值;(3)若对任意恒成立,求实数的取值范围.19(12分)对某
5、种书籍每册的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.4.834.220.377560.170.60-39.384.8其中,.为了预测印刷千册时每册的成本费,建立了两个回归模型:,.(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)(2)根据所给数据和(1)中的模型选择,求关于的回归方程,并预测印刷千册时每册的成本费.附:对于一组数据,其回归方程的斜率和截距的最小二乘估计公式分别为:,.20(12分)已知椭圆:,过点作倾斜角互补的两条不同直线,设与椭圆交于、两点,与椭圆交于,两点.(1)若为线段的中点,求直线的方程;(2)记,求的取值范
6、围.21(12分)已如变换对应的变换矩阵是,变换对应的变换矩阵是.()若直线先经过变换,再经过变换后所得曲线为,求曲线的方程;()求矩阵的特征值与特征向量.22(10分)如图, 平面平面为等边三角形, 过作平面交分别于点,设.(1)求证:平面; (2)求的值, 使得平面与平面所成的锐二面角的大小为.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:运用奇函数的定义,可得,再计算即可详解:函数为奇函数,故选点睛:本题主要考查的是奇函数的定义,分段函数的应用,属于基础题。根据函数奇偶性的性质是解题的关键2、B【解析】求
7、出函数的解析式,然后判断对称中心或对称轴即可【详解】函数f(x)2sin(x+3)(0)的最小正周期为2,可得函数f(x)2sin(4x+由4x+3=k+2,可得x=k当k0时,函数的对称轴为:x=故选:B【点睛】本题考查三角函数的性质的应用,周期的求法,考查计算能力,是基础题3、B【解析】分析:因为与中至少有一个不少于的否定是且,所以选B.详解:因为与中至少有一个不少于的否定是且,故答案为:B.点睛:(1)本题主要考查反证法,意在考查学生对这些知识的掌握水平.(2)两个数中至少有一个大于等于a的否定是两个数都小于a.4、D【解析】分析:利用期望与方差的性质与公式求解即可.详解: 随机变量满足
8、,所以,解得,故选D.点睛:已知随机变量的均值、方差,求的线性函数的均值、方差和标准差,可直接用的均值、方差的性质求解.若随机变量的均值、方差、标准差,则数的均值、方差、标准差.5、C【解析】试题分析:设AC=x,则0 x12,若矩形面积为小于32,则x8或x4,从而利用几何概型概率计算公式,所求概率为长度之比解:设AC=x,则BC=12-x,0 x12若矩形面积S=x(12-x)32,则x8或x4,即将线段AB三等分,当C位于首段和尾段时,矩形面积小于32,故该矩形面积小于32cm2的概率为P= 故选 C考点:几何概型点评:本题主要考查了几何概型概率的意义及其计算方法,将此概率转化为长度之比
9、是解决本题的关键,属基础题6、A【解析】由向量的线性运算,可得,即得解.【详解】由于,故所以故选:A【点睛】本题考查了平面向量的线性运算,考查了学生数形结合,数学运算的能力,属于基础题.7、A【解析】分析:根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是线性回归方程详解:, 这组数据的样本中心点是(4,5)把样本中心点代入四个选项中,只有y=x+1成立,故选A点睛:本题考查求线性回归方程,一般情况下是一个运算量比较大的问题,解题时注意平均数的运算不要出错,注意系数的求法,运算时要细心,但是对于一个选择题,还有它特殊的加法8、A
10、【解析】根据已知的偶函数以及f(2x)f(x)可以求得函数f(x)在2,2上的解析式,进而得到g(x)在2,2上的解析式,对g(x)进行求导可知g(x)的增减性,通过增减性求得最大值【详解】根据,得函数关于点(1,0)对称,且当时, ,则时,所以当时,;又函数为偶函数,所以当时,则,可知当,故在-2,0)上单调递增, 时,在0,2上单调递减,故.故选:A【点睛】本题考查函数的基本性质:对称性,奇偶性,周期性同时利用导函数的性质研究了函数在给定区间内的最值问题,是中档题9、B【解析】根据双曲线的定义和等腰三角形的性质,即可得到c,化简整理可得离心率【详解】双曲线,可得a3,因为是等腰三角形,当时
11、,由双曲线定义知|PF1|2a+|PF2|,在F1PF2中,2c+2c+|PF2|22,即6c2a22,即c,解得C的离心率e,当时,由双曲线定义知|PF1|2a+|PF2|=2a+2c,在F1PF2中,2a+2c +2c+2c22,即6c222a=16,即c,解得C的离心率e1(舍),故选B【点睛】本题考查了双曲线的简单性质,考查了运算求解能力和推理论证能力,属于中档题10、C【解析】分析:由21,知两个函数值要选用不同的表达式计算即可详解:,故选C点睛:本题考查分段函数,解题时要根据自变量的不同范围选用不同的表达式计算11、C【解析】使用裂项法及m,n的范围求出m,n的值,从而求出答案【详
12、解】1=11=11mn,m,nNm=13,n=20,所以mn=260.故选:C【点睛】本题主要考查归纳推理和裂项相消法,意在考查学生对该知识的理解掌握水平,属于基础题.12、C【解析】分析:利用面积公式和余弦定理进行计算可得。详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。二、填空题:本题共4小题,每小题5分,共20分。13、72【解析】对6个位置进行编号,第一步,两端排男生;第二步,2,3或4,5排两名女生,则剩下位置的排法是固定的.【详解】第一步:两端排男生共,第二步:2,3或4,5排两名女生共,由乘法分步原理得:不同的排法种数是.【点
13、睛】本题若没有注意2位相邻女生的顺序,易出现错误答案.14、【解析】将问题转化为当直线与函数的图象有个交点时,求实数的取值范围,并作出函数的图象,考查当直线与曲线相切以及直线与直线平行这两种临界位置情况,结合斜率的变化得出实数的取值范围【详解】问题等价于当直线与函数的图象有个交点时,求实数的取值范围作出函数的图象如下图所示:先考虑直线与曲线相切时,的取值,设切点为,对函数求导得,切线方程为,即,则有,解得.由图象可知,当时,直线与函数在上的图象没有公共点,在有一个公共点,不合乎题意;当时,直线与函数在上的图象没有公共点,在有两个公共点,合乎题意;当时,直线与函数在上的图象只有一个公共点,在有两
14、个公共点,不合乎题意;当时,直线与函数在上的图象只有一个公共点,在没有公共点,不合乎题意.综上所述,实数的取值范围是,故答案为.【点睛】本题考查函数的零点个数问题,一般转化为两个函数图象的交点个数问题,或者利用参变量分离转化为参数直线与定函数图象的交点个数问题,若转化为直线(不恒与轴垂直)与定函数图象的交点个数问题,则需抓住直线与曲线相切这些临界位置,利用数形结合思想来进行分析,考查分析问题的能力和数形结合数学思想的应用,属于难题15、【解析】由题意可化为,根据不等式性质化简即可求解.【详解】由题意可知,即,解得,所以不等式的解集,故答案为:.【点睛】本题主要考查了含绝对值不等式的解法,一元二
15、次不等式的解法,属于中档题.16、64 【解析】根据三视图可得该几何体表示一个四棱锥,且四棱锥的底面是一个长为8,宽为6的矩形,其中高为4,即可利用体积公式和表面积公式求解,得到答案.【详解】由题意可知,这个几何体是一个四棱锥,且四棱锥的底面是一个长为8,宽为6的矩形,四棱锥高为4,所以四棱锥的体积为,四棱锥的侧面为等腰三角形,底边长分别为,斜高分别为,所以侧面积为.【点睛】本题主要考查了空间几何体的三视图的应用,以及四棱锥的体积与侧面积的计算,其中解答中根据几何体的三视图得到几何体的结构特征是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程
16、或演算步骤。17、(1);(2)分布列见详解;.【解析】(1)根据题意,先得出红球全部摸出所包含的情况,再求出摸球5次所包含的基本事件个数,进而可求出概率;(2)根据题意,先得出的可能取值为:,结合题意,求出对应的概率,进而可得出分布列,再由期望的计算公式,以及组合数的性质,即可求出结果.【详解】(1)当,时,由题意,红球全部摸出,共有种情况;若摸球次数为5,则第5次摸到红球,此时所包含的基本事件个数为个;因此,“摸球次数为5”的概率为;(2)由题意,的可能取值为:,从袋中个红球和个白球中,将红球全部摸出,共有种情况;则,所以的分布列为:因此其数学期望为:因为所以.【点睛】本题主要考查离散型随
17、机变量的分布列与期望,古典概型的概率问题,以及组合数的性质,难度较大.18、(1);(2);(3),【解析】(1)令由得进而求解;(2)由(1)知在上单调递增,进而求解;(3)根据指数函数的图象特征,将不等式恒成立转化为函数图象的交点问题【详解】(1)令,则,解得,即(2)由(1)知,在上单调递增,解得或(舍。(3),即令,由和函数图象可知,对,恒成立,在,为增函数,且图象是由向右平移3个单位得到的,所以在,恒成立,只需,即,的取值范围为,.【点睛】本题考查指数型不等式、二次函数的图象和性质、不等式恒成立问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力、运算求解能力.1
18、9、 (1) 模型更可靠.(2) 关于的回归方程为.当时,该书每册的成本费(元).【解析】分析:(1)根据散点呈曲线趋势,选模型更可靠. (2)根据公式求得,根据求得,最后求自变量为20 对应的函数值.详解:(1)由散点图可以判断,模型更可靠.(2)令,则,则.,关于的线性回归方程为.因此,关于的回归方程为.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.20、(1);(2)【解析】(1)设直线l1的方程为y1=k(x1),根据韦达定理
19、和中点坐标公式即可求出直线的斜率k,问题得以解决,(2)根据弦长公式分别求出|AB|,|CD|,再根据基本不等式即可求出【详解】(1)设直线的斜率为,方程为,代入中,.判别式 .设,则.中点为,则.直线的方程为,即.(2)由(1)知 .设直线的方程为.同理可得. .令,则,.在,分别单调递减,或.故或.即.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值在利用代数法解决最值与范围问题时常从以下几个方面考虑:利用判别式来构造不等关系,从而确定参数的取值范围;利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;利用基本不等式求出参数的取值范围;利用函数的值域的求法,确定参数的取值范围21、();()详见解析.【解析】()先求出变换矩阵,然后设曲线上一点,列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 我的“魔鬼教练”作文
- 员工考勤制度
- 《居住规划》课件
- 《混合微电路技术》课件
- 《汽车拆装实训》课件
- 四川省成都市某校2024-2025学年九年级上学期期中考试物理试题(无答案)
- 一年级下册语文教案设计
- 2022年甘肃省公务员录用考试《行测》真题及答案解析
- 2024年新高一数学初升高衔接《指数及其运算》含答案解析
- 【语文课件】归 园 田 居课件
- 食堂餐饮意见征求表
- 卧式单面多轴钻孔组合机床液压系统的设计
- 影响气候的主要因素复习教学课件
- 《机械制图》校本教材-制图基本知识与技能
- 安全生产事故管理台账
- 河南省重点研发与推广专项(科技攻关)项目申请书(参考模板)
- 呼吸重症医学学习班主持稿
- 《人体内脏》教学课件
- (完整版)露天参考资料矿山安全标准化记录表格
- 公司内部审批权限一览表
- 2020译林版高中英语选择性必修三单词表
评论
0/150
提交评论