版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1执行如图所示的程序框图,当输出的值为时,则输入的( )ABCD2在直角坐标系中,以为极点,轴正半轴为极轴,建立极坐标系,直线的参数方程为(为参数),曲线的方程为,直线与曲线相交于两点,当的面积最大时,( )ABCD3设复数(是虚数单位
2、),则( )AiBCD4已知函数有三个不同的零点(其中),则的值为( )ABCD15若身高和体重的回归模型为,则下列叙述正确的是( )A身高与体重是负相关B回归直线必定经过一个样本点C身高的人体重一定时D身高与体重是正相关6函数的单调递增区间为( )ABCD7某电子管正品率为,次品率为,现对该批电子管进行测试,那么在五次测试中恰有三次测到正品的概率是( )ABCD8函数的部分图象可能是( )ABCD9由曲线,直线及轴所围成的平面图形的面积为( )A6B4CD10随机变量,且,则()A64B128C256D3211从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A至少有
3、一个红球与都是红球B至少有一个红球与都是白球C恰有一个红球与恰有二个红球D至少有一个红球与至少有一个白球12已知命题p:xR,x2-x+11命题q:若a2b2,则ab,下列命题为真命题的是()ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知定义在上的函数在导函数为,若,且当时,则满足不等式的实数的取值范围是_14设函数和函数,若对任意都有使得,则实数a的取值范围为_15已知函数的导函数为,且满足,则_16已知实数满足约束条件,则的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,为的导数()求曲线在点处的切线方程;()证明:在区间
4、上存在唯一零点;()设,若对任意,均存在,使得,求实数的取值范围.18(12分)以下是某地搜集到的新房源的销售价格(万元)和房屋的面积的数据: 房屋面积销售价格(万元)(1)由散点图看出,可用线性回归模型拟合与的关系,求关于的线性回归方程;(2)请根据(1)中的线性回归方程,预测该地当房屋面积为时的销售价格。,其中,19(12分)已知在平面直角坐标系中,直线的参数方程是(t是参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)判断直线与曲线C的位置关系;(2)设点为曲线C上任意一点,求的取值范围20(12分)的展开式中,奇数项的二项式系数之和为128,且前三项系数
5、成等差数列.(1)求的值;(2)若,展开式有多少有理项?写出所有有理项.21(12分)已知椭圆:的离心率为,且经过点()求椭圆的方程;()与轴不垂直的直线经过,且与椭圆交于,两点,若坐标原点在以为直径的圆内,求直线斜率的取值范围22(10分)某工厂甲、乙两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,甲、乙两条生产线生产的产品为合格品的概率分别为相.(1)若从甲、乙两条生产线上各抽检一件产品。至少有一件合格的概率为.求的值:(2)在(1)的前提下,假设每生产一件不合格的产品,甲、乙两条生产钱损失分别为元和元,若从两条生产线上各随机抽检件产品。估计哪条生产线的损失较多?(3
6、)若产品按照一、二、三等级分类后销售,每件可分别获利元,元,元,现从甲、乙生产线各随机抽取件进行检测,统计结果如图所示。用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估计该厂产量为件时利润的期望值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:根据循环结构的特征,依次算出每个循环单元的值,同时判定是否要继续返回循环体,即可求得S的值详解: 因为当 不成立时,输出 ,且输出 所以 所以 所以选B 点睛:本题考查了循环结构在程序框图中的应用,按照要求逐步运算即可,属于简单题2、D【解析】先
7、将直线直线与曲线转化为普通方程,结合图形分析可得,要使的面积最大,即要为直角,从而求解出。【详解】解:因为曲线的方程为,两边同时乘以,可得,所以曲线的普通方程为,曲线是以为圆心,2为半径的上半个圆.因为直线的参数方程为(为参数),所以直线的普通方程为,因为,所以当为直角时的面积最大,此时到直线的距离 ,因为直线与轴交于,所以,于是,所以,故选D。【点睛】本题考查了曲线的参数方程、极坐标方程与普通方程之间的互化,同时考查了直线与圆的位置关系,数形结合是本题的核心思想。3、D【解析】先化简,结合二项式定理化简可求.【详解】,故选D.【点睛】本题主要考查复数的运算和二项式定理的应用,逆用二项式定理要
8、注意配凑出定理的结构形式.4、D【解析】令y=,从而求导y=以确定函数的单调性及取值范围,再令=t,从而化为t2+(a1)t+1a=0有两个不同的根,从而可得a3或a1,讨论求解即可【详解】令y=,则y=,故当x(0,e)时,y0,y=是增函数,当x(e,+)时,y0,y=是减函数;且=,=,=0;令=t,则可化为t2+(a1)t+1a=0,故结合题意可知,t2+(a1)t+1a=0有两个不同的根,故=(a1)24(1a)0,故a3或a1,不妨设方程的两个根分别为t1,t2,若a3,t1+t2=1a4,与t1且t2相矛盾,故不成立;若a1,则方程的两个根t1,t2一正一负;不妨设t10t2,结
9、合y=的性质可得,=t1,=t2,=t2,故(1)2(1)(1)=(1t1)2(1t2)(1t2)=(1(t1+t2)+t1t2)2又t1t2=1a,t1+t2=1a,(1)2(1)(1)=1;故选:D【点睛】本题考查了导数的综合应用及转化思想的应用,考查了函数的零点个数问题,考查了分类讨论思想的应用5、D【解析】由线性回归直线方程可得回归系数大于0,所以正相关,且经过样本中心,且为估计值,即可得到结论【详解】可得,可得身高与体重是正相关,错误,正确;回归直可以不经过每一个样本点,一定过样本中心点,故错误;若,可得,即体重可能是,故错误故选【点睛】本题考查线性回归中心方程和运用,考查方程思想和
10、估计思想,属于基础题6、B【解析】先求出的定义域,再利用同增异减以及二次函数的图像判断单调区间即可.【详解】令,得f(x)的定义域为,根据复合函数的单调性规律,即求函数在上的减区间,根据二次函数的图象可知为函数的减区间.故选:B【点睛】本题主要考查对数函数的定义域以及复合函数的单调区间等,属于基础题型.7、D【解析】根据二项分布独立重复试验的概率求出所求事件的概率。【详解】由题意可知,五次测试中恰有三次测到正品,则有两次测到次品,根据独立重复试验的概率公式可知,所求事件的概率为,故选:D。【点睛】本题考查独立重复试验概率的计算,主要考查学生对于事件基本属性的判断以及对公式的理解,考查运算求解能
11、力,属于基础题。8、A【解析】考查函数的定义域、在上的函数值符号,可得出正确选项.【详解】对于函数,解得且,该函数的定义域为,排除B、D选项.当时,则,此时,故选:A.【点睛】本题考查函数图象的识别,一般从函数的定义域、奇偶性、单调性、零点、函数值符号进行判断,考查分析问题和解决问题的能力,属于中等题.9、D【解析】先求可积区间,再根据定积分求面积.【详解】由,得交点为,所以所求面积为,选D.【点睛】本题考查定积分求封闭图形面积,考查基本求解能力,属基本题.10、A【解析】根据二项分布期望的计算公式列方程,由此求得的值,进而求得方差,然后利用方差的公式,求得的值.【详解】随机变量服从二项分布,
12、且,所以,则,因此.故选A.【点睛】本小题主要考查二项分布期望和方差计算公式,属于基础题.11、C【解析】从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球和1个白球;1个红球2个白球;3个全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项D中,事件“至少有一个红球”与事件“至少有一个白球”的事件为“2个红球1个白球”与“1个红球2个白球”;选项C中,事件“恰有一个红球”与事件“恰有2个红球”互斥不对立,故选C.12、B【解析】先判定命题的真假,再结合复合命题的判
13、定方法进行判定.【详解】命题p:x=1R,使x2-x+11成立 故命题p为真命题; 当a=1,b=-2时,a2b2成立,但ab不成立, 故命题q为假命题, 故命题pq,pq,pq均为假命题; 命题pq为真命题, 故选:B【点睛】本题以命题的真假判断与应用为载体,考查了复合命题,特称命题,不等式与不等关系,难度中档二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:根据条件得到函数的对称性,结合函数的单调性和导数之间的关系判断函数的单调性,利用特殊值法进行求解即可.详解:由,得函数关于对称,当时,即在上单调递减,不妨设,则不等式等价为,即,即,得,故实数的取值范围是.故答案为:.
14、点睛:本题主要考查不等式的求解,利用条件判断函数的对称性和单调性,利用特殊值法是解决本题的关键.14、【解析】先根据的单调性求出的值域A,分类讨论求得的值域B,再将条件转化为A,进行判断求解即可【详解】是上的递减函数,的值域为,令A=,令的值域为B,因为对任意都有使得,则有A,而,当a=0时,不满足A;当a0时,解得;当a0时,不满足条件A,综上得.故答案为.【点睛】本题考查了函数的值域及单调性的应用,关键是将条件转化为两个函数值域的关系,运用了分类讨论的数学思想,属于中档题15、-1【解析】分析:先求导数,解得,代入解得.详解:因为,所以所以因此,点睛:利用导数的几何意义解题,主要是利用导数
15、、切点坐标、切线斜率之间的关系来进行转化.16、1【解析】作出题中不等式组表示的平面区域,得如图的ABC及其内部,再将目标函数zxy对应的直线进行平移并观察z的变化,即可得到zxy的最大值【详解】作出实数x,y满足约束条件表示的平面区域,得到如图的ABC及其内部,其中A(1,1),B(3,1),C(1,1)将直线l:zxy进行平移,当l经过点B时,目标函数z达到最大值;z最大值1;故答案为1【点睛】本题给出二元一次不等式组,求目标函数zxy的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()
16、;()证明见解析;().【解析】()将代入求出切点坐标,由题可得,将代入求出切线斜率,进而求出切线方程()设,则,由导函数研究的单调性进,而得出答案()题目等价于,易求得,利用单调性求出的最小值,列不等式求解【详解】(),所以,即切线的斜率,且,从而曲线在点处的切线方程为.()设,则.当时,;当时,所以在单调递增,在单调递减.又,故在存在唯一零点.所以在存在唯一零点.()由已知,转化为, 且的对称轴所以 . 由()知,在只有一个零点,设为,且当时,;当时,所以在单调递增,在单调递减.又,所以当时,.所以,即,因此,的取值范围是.【点睛】导数是高考的重要考点,本题考查导数的几何意义,利用单调性解
17、决函数的恒成立问题,存在性问题等,属于一般题18、 (1) .(2) 该地房屋面积为时的销售价格为万元.【解析】分析:(1)先求出和的平均数,将数据代入,计算出的值,最后根据,求出的值,即可得到线性回归方程;(2)将代入所求的线性回归方程可估计当房屋面积为时的销售价格.详解:(1)设所求线性回归方程为,则所求线性回归方程为(2)当时,销售价格的估计值为(万元)所以该地房屋面积为时的销售价格为万元点睛:求回归直线方程的步骤:依据样本数据画出散点图,确定两个变量具有线性相关关系;计算的值;计算回归系数;写出回归直线方程为; 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们
18、分析两个变量的变化趋势.19、(1)相离;(2).【解析】试题分析:本题考查参数方程与普通方程、极坐标方程与直角坐标方程的转化,圆的参数方程的应用以及直线和圆的位置关系的判断(1)把直线、曲线方程化为直角坐标方程后根据圆心到直线的距离和半径的关系判断即可(2)利用圆的参数方程,根据点到直线的距离公式和三角函数的知识求解试题解析:(1)由,消去得直线的普通方程为:由,得. ,即 .化为标准方程得:. 圆心坐标为,半径为1, 圆心到直线的距离, 直线与曲线相离.(2)由为曲线上任意一点,可设,则,,的取值范围是.20、(1)2或14;(2),.【解析】先由二项式系数的性质求,再根据二项式展开式的通项公式和等差中项公式求 ;(2)根据二项式展开式的通项公式,令的指数为整数次求解.【详解】因为奇数项的二项式系数之和为128,所以,解得,所以二项式为第一项:,系数为1,第二项:,系数为,第三项:,系数为,由前三项系数成等差数列得: ,解得或.(2)若,由(1)得二项式为,通项为:,其中 所以,令即,此时;令即,不符题意;令即,不符题意;令即,此时;令即,不符题意;令即,不符题意;令即, 此时综上,有3项有理项,分别是:,.【点睛】本题考查二项式定理的系数性质和展开式的通项公式,等差中项公式.注意是第项.21、()()【解析】(I)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿化建设招标答疑
- 施工总承包协议
- 合同转让协议的范本解析
- 软件云平台开发与部署合同
- 彩钢屋面合同范例
- 树脂合成中的智能化控制技术考核试卷
- 毛坯房屋租赁合同模板
- 承揽矿石合同模板
- 材料走账协议合同模板
- 房屋中介委托合同范例
- GB/T 4337-2015金属材料疲劳试验旋转弯曲方法
- GB/T 28762-2012数控剪板机
- GB/T 283-2021滚动轴承圆柱滚子轴承外形尺寸
- 2023年MBA英语真题及答案管理类联考综合
- 品管圈徽SOS圈释义
- 萨提亚模式家庭治疗课件
- 行政事业单位全面实施预算绩效管理思路和路径及其评课件
- 《墨梅》课件(省一等奖)
- 国际贸易之进出口流程操作课件
- 三美术上册第16课新颖的电脑课件1新人教版
- 实验室基本技能培训课件
评论
0/150
提交评论