版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,关于的不等式只有两个整数解,则实数的取值范围是( )ABCD2如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是( )A2B3C4D53某学校开展研究性学习活动,某同学获得一组
2、实验数据如下表: x34y12对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是ABCD4设函数,记,若函数至少存在一个零点,则实数的取值范围是( )ABCD5若6名男生和9名女生身高(单位:)的茎叶图如图,则男生平均身高与女生身高的中位数分别为( )A179,168B180,166C181,168D180,1686若对于实数x,y有1-x2,y+11A5B6C7D87已知定义在R上的函数f(x)的导函数为f(x),若f(x)+fA(-,0)B(0,+)C(-,1)D(1,+)8如图是“向量的线性运算”知识结构,如果要加入“三角形法则”和“平行四边形法则”,应该放在( )A“向量的加减法”
3、中“运算法则”的下位B“向量的加减法”中“运算律”的下位C“向量的数乘”中“运算法则”的下位D“向量的数乘”中“运算律”的下位9小张从家出发去看望生病的同学,他需要先去水果店买水果,然后去花店买花,最后到达医院.相关的地点都标在如图所示的网格纸上,网格线是道路,则小张所走路程最短的走法的种数为( )A72B56C48D4010根据中央对“精准扶贫”的要求,某市决定派7名党员去甲、乙、丙三个村进行调研,其中有4名男性党员,3名女性党员现从中选3人去甲村若要求这3人中既有男性,又有女性,则不同的选法共有( )A35种B30种C28种D25种11已知函数,函数有四个不同的零点,从小到大依次为,则的取
4、值范围为( )ABCD12从某企业生产的某种产品中随机抽取件,测量这些产品的一项质量指标,其频率分布表如下:质量指标分组频率则可估计这批产品的质量指标的众数、中位数为( )A,B,C,D,二、填空题:本题共4小题,每小题5分,共20分。13已知幂函数的图象过点,则满足方程的的值为_.14已知X的分布列如图所示,则X-101P0.20.3a(1),(2),(3),其中正确的个数为_.15甲、乙等五名志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者,设随机变量为这五名志愿者中参加A岗位服务的人数,则的期望值为_16由曲线,坐标轴及直线围成的图形的面积等于_。三、解答题:
5、共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知复数,若,且在复平面内对应的点位于第四象限.(1)求复数;(2)若是纯虚数,求实数的值.18(12分)设函数.()讨论函数的单调性;()当函数有最大值且最大值大于时,求的取值范围.19(12分)设函数在点处有极值.(1)求常数的值;(2)求曲线与轴所围成的图形的面积.20(12分)某工厂每年定期对职工进行培训以提高工人的生产能力(生产能力是指一天加工的零件数)现有、两类培训,为了比较哪类培训更有利于提高工人的生产能力,工厂决定从同一车间随机抽取100名工人平均分成两个小组分别参加这两类培训培训后测试各组工人的生产能力得到如下频
6、率分布直方图(1)记表示事件“参加类培训工人的生产能力不低于130件”,估计事件的概率;(2)填写下面列联表,并根据列联表判断是否有的把握认为工人的生产能力与培训类有关:生产能力件生产能力件总计类培训50类培训50总计100(3)根据频率分布直方图,判断哪类培训更有利于提高工人的生产能力,请说明理由参考数据0.150.100.0500.0250.0100.0052.0722.7063.8415.0246.6357.879参考公式:,其中.21(12分)在平面直角坐标系xOy中,曲线M的参数方程为(t为参数,且t0),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为4co
7、s(1)将曲线M的参数方程化为普通方程,并将曲线C的极坐标方程化为直角坐标方程;(2)求曲线M与曲线C交点的极坐标(0,02)22(10分)已知函数(1)若函数在区间内是单调递增函数,求实数a的取值范围;(2)若函数有两个极值点,且,求证:(注:为自然对数的底数)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:,在上单调递增,上单调递减,又,不等式只有两个整数解,即实数的取值范围是故选C【考点】本题主要考查导数的运用2、C【解析】把三视图还原为原几何体为一个四棱锥,底面是边长为3的正方形,侧棱底面ABCD,四
8、个侧面均为直角三角形,则此几何体各面中直角三角形的个数是4个,选C. 3、D【解析】根据的数值变化规律推测二者之间的关系,最贴切的是二次关系.【详解】根据实验数据可以得出,近似增加一个单位时,的增量近似为2.5,3.5,4.5,6,比较接近,故选D.【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.4、A【解析】试题分析:函数定义域是,设,则,设,则,易知,即也即在上恒成立,所以在上单调递增,又,因此是的唯一零点,当时,当时,所以在上递减,在上递增,函数至少有一个零点,则,故选B考点:函数的零点,用导数研究函数的性质【名师点睛】本题考查函数的零点
9、的知识,考查导数的综合应用,题意只要函数的最小值不大于0,因此要确定的正负与零点,又要对求导,得,此时再研究其分子,于是又一次求导,最终确定出函数的最小值,本题解题时多次求导,考查了学生的分析问题与解决问题的能力,难度较大5、C【解析】根据平均数和中位数的定义即可得出结果.【详解】6名男生的平均身高为,9名女生的身高按由低到高的顺序排列为162,163,166,167,168,170,176,184,185,故中位数为168.故选:C.【点睛】本题考查由茎叶图求平均数和中位数,难度容易.6、C【解析】将2x+3y+1【详解】2当x=3,y=0或x=-1,y=2是等号成立.故答案选C【点睛】本题
10、考查了绝对值三角不等式,将2x+3y+17、B【解析】不等式的exfx0,gx1,即e故选B.【点睛】不等式问题往往可以转化为函数图像问题求解,函数图像问题有时借助函数的性质(奇偶性、单调性等)进行研究,有时还需要构造新的函数.8、A【解析】由“三角形法则”和“平行四边形法则”是向量的加减法的运算法则,由此易得出正确选项【详解】因为“三角形法则”和“平行四边形法则”是向量的加减法的运算法则,故应该放在“向量的加减法”中“运算法则”的下位故选A【点睛】本题考查知识结构图,向量的加减法的运算法则,知识结构图比较直观地描述了知识之间的关联,解题的关键是理解知识结构图的作用及知识之间的上下位关系9、A
11、【解析】分别找出从家到水果店,水果店到花店,花店到医院的最短路线,分步完成用累乘即可【详解】由题意可得从家到水果店有6种走法,水果店到花店有3种走法,花店到医院有4种走法,因此一共有(种)【点睛】本题考查了排列组合中的乘法原理属于基础题10、B【解析】首先算出名党员选名去甲村的全部情况,再计算出全是男性党员和全是女性党员的情况,即可得到既有男性,又有女性的情况.【详解】从名党员选名去甲村共有种情况,名全是男性党员共有种情况,名全是女性党员共有种情况,名既有男性,又有女性共有种情况.故选:B【点睛】本题主要考查组合的应用,属于简单题.11、B【解析】分析:通过f(x)的单调性,画出f(x)的图象
12、和直线y=a,考虑四个交点的情况,得到x1=-2-x2,-1x20,x3x4=4,再由二次函数的单调性,可得所求范围详解:当x0时,f(x)=,可得f(x)在x2递增,在0 x2处递减,由f(x)=e(x+1)2,x0,x-1时,f(x)递减;-1x0时,f(x)递增,可得x=-1处取得极小值1,作出f(x)的图象,以及直线y=a,可得e(x1+1)2=e(x2+1)2=,即有x1+1+x2+1=0,可得x1=-2-x2,-1x20,可得x3x4=4,x1x2+x3x4=4-2x2-x22=-(x2+1)2+5,在-1x20递减,可得所求范围为4,5)故选B.点睛:本题考查函数方程的转化思想,
13、以及数形结合思想方法,考查二次函数的最值求法,化简整理的运算能力,属于中档题12、C【解析】根据频率分布表可知频率最大的分组为,利用中点值来代表本组数据可知众数为;根据中位数将总频率分为的两部分,可构造方程求得中位数.【详解】根据频率分布表可知,频率最大的分组为 众数为:设中位数为则,解得:,即中位数为:本题正确选项:【点睛】本题考查利用样本的数据特征估计众数和中位数的问题,关键是明确众数和中位数的概念,掌握用样本估计总体的方法.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】设,可得,解得,即可得出【详解】设,则,解得令,解得故答案为:1【点睛】本题考查了幂函数的定义、方程的
14、解法,考查了推理能力与计算能力,属于容易题14、1【解析】由分布列先求出,再利用公式计算和即可.【详解】解:由题意知:,即; 综上,故(1)正确,(2)(3)错误,正确的个数是1.故答案为:1.【点睛】本题考查了离散型随机变量的期望和方差,属于基础题.15、【解析】分析:随机变量的可能取的值为1,2,事件“”是指有两人同时参加A岗位服务,由此可得的分布列,进而得到的期望.详解:随机变量的可能取的值为1,2,事件“”是指有两人同时参加A岗位服务,则,.即的分布列如下表所示:的数学期望.故答案为:.点睛:本题考查等可能事件的概率,考查离散型随机变量的概率与分布列和数学期望.16、1【解析】根据定积
15、分求面积【详解】.【点睛】本题考查利用定积分求面积,考查基本分析求解能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1).(2).【解析】分析:(1)先根据和在复平面内对应的点位于第四象限求出a的值,即得复数z.(2)直接根据纯虚数的定义求m的值.详解:(1)因为,所以,所以.又因为在复平面内对应的点位于第四象限,所以,即.(2)由(1)得,所以,所以.因为是纯虚数,所以,所以.点睛:(1)本题主要考查复数的模和复数的几何意义,考查纯虚数的概念,意在考查学生对这些知识的掌握水平.(2)复数为纯虚数不要把下面的b0漏掉了.18、 (1) 当时,函数在上单调
16、递增,当时,函数在 上单调递增,在 上单调递减;(2) 【解析】()函数 的定义域为 , 当 时, ,函数在上单调递增;当时,令,解得,i)当时,函数单调递增,ii)当时,函数单调递减;综上所述:当时,函数在上单调递增,当时,函数在 上单调递增,在上单调递减;()由()得: 当函数有最大值且最大值大于,即,令,且在上单调递增, 在上恒成立, 故的取值范围为.19、 (1);(2).【解析】(1)求出导函数,利用函数在处有极值,由且,解方程组,即可求得的值;(2)利用定积分的几何意义,先确定确定函数的积分区间,被积函数,再求出原函数,利用微积分基本定理,结合函数的对称性即可得结论.【详解】(1)
17、由题意知,且,即,解得.(2)如图,由1问知.作出曲线的草图,所求面积为阴影部分的面积. 由得曲线与轴的交点坐标是,和,而是上的奇函数,函数图象关于原点中心对称.所以轴右侧阴影面积与轴左侧阴影面积相等.所以所求图形的面积为 .【点睛】本题主要考查利用导数研究函数的极值、定积分的几何意义以及微积分基本定理的应用,属于中档题. 已知函数的极值求参数的一般步骤是:(1)列方程求参数;(2)检验方程的解的两边导函数符号是否相反.20、 (1) (2)见解析;(3)见解析【解析】(1)由频率分布直方图用频率估计概率,求得对应的频率值,用频率估计概率即可;(2)根据题意填写列联表,计算观测值,对照临界值得
18、出结论;(3)根据频率分布直方图,判断、类生产能力在130以上的频率值,比较得出结论【详解】解:(1)由频率分布直方图,用频率估计概率得,所求的频率为,估计事件的概率为;(2)根据题意填写列联表如下,类培训生产能力件的人数为,类培训生产能力件的人数为,类培训生产能力件的人数为,类培训生产能力件的人数为,生产能力件生产能力件总计类培训361450类培训123850总计4852100由列联表计算,所以有的把握认为工人的生产能力与培训类有关;(3)根据频率分布直方图知,类生产能力在130以上的频率为0.28,类培训生产能力在130以上的频率为0.76,判断类培训更有利于提高工人的生产能力【点睛】本题考查了频率分布直方图与独立性检验的应用问题,是基础题21、(1)曲线的普通方程为(或)曲线的直角坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脚手架安全监理细则模版(2篇)
- 统计行政指导工作方案模版(2篇)
- 低压配电室操作规程(2篇)
- 二零二五年度新型环保建筑材料采购销售合同范本3篇
- 二零二五年度昆明公租房电子合同租赁合同签订与租赁双方责任划分3篇
- 2025年市场部工作计划范例(3篇)
- 水污染控制 课程设计
- 二零二五年度展览馆场地租赁合同范本27篇
- 贴胶机课程设计
- 记事本课程设计
- 法理学课件马工程
- 《玉米种植技术》课件
- DB51-T 5038-2018 四川省地面工程施工工艺标准
- 第47届世界技能大赛江苏省选拔赛计算机软件测试项目技术工作文件
- 2023年湖北省公务员录用考试《行测》答案解析
- M200a电路分析(电源、蓝牙、FM)
- 2024-2030年全球及中国洞察引擎行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 建筑工程施工图设计文件审查办法
- 置业顾问考核方案
- 吉林市2024-2025学年度高三第一次模拟测试 (一模)数学试卷(含答案解析)
- 自考《英语二》高等教育自学考试试题与参考答案(2024年)
评论
0/150
提交评论