2022年江苏省扬州市江都区大桥高中高二数学第二学期期末监测模拟试题含解析_第1页
2022年江苏省扬州市江都区大桥高中高二数学第二学期期末监测模拟试题含解析_第2页
2022年江苏省扬州市江都区大桥高中高二数学第二学期期末监测模拟试题含解析_第3页
2022年江苏省扬州市江都区大桥高中高二数学第二学期期末监测模拟试题含解析_第4页
2022年江苏省扬州市江都区大桥高中高二数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知椭圆的右焦点为短轴的一个端点为,直线交椭圆于两点若,点到直线的距离不小于,则椭圆的离心率的取值范围是( )ABCD2已知,复数,则( )AB1C0D23已知是两条不同直线,是三个不同平面,下列命题中正确的是( )A若,则B若,则C

2、若,则D若,则4在极坐标系中,圆的圆心的极坐标是()ABCD5已知函数,若方程有五个不同的实数根,则 的取值范围是( )A(0,+)B(0,1)C(,0)D(0,)6已知i为虚数单位,复数z满足(1i)z2i,是复数z的共轭复数,则下列关于复数z的说法正确的是( )Az1iBCD复数z在复平面内表示的点在第四象限7等比数列的前n项和为,若则=A10B20C20或-10D-20或108已知是定义在上的可导函数,的图象如下图所示,则的单调减区间是( )ABCD9如图,在正四棱柱中, 是侧面内的动点,且记与平面所成的角为,则的最大值为ABCD10函数( )ABCD11下列说法中正确的个数是( )命题

3、:“、,若,则”,用反证法证明时应假设或;若,则、中至少有一个大于;若、成等比数列,则;命题:“,使得”的否定形式是:“,总有”.ABCD12已知函数的导数是,若,都有成立,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13,若,则的最大值为_.14某细胞集团,每小时有2个死亡,余下的各个分裂成2个,经过8小时后该细胞集团共有772个细胞,则最初有细胞_个.15函数为上的奇函数,若对任意的且,都有,已知,则不等式的解集为_.16已知P是椭圆上的一点,F1,F2是椭圆的两个焦点,且F1PF260,则F1PF2的面积是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤

4、。17(12分)已知函数.(1)求曲线在原点处的切线方程.(2)当时,求函数的零点个数;18(12分)现有9名学生,其中女生4名,男生5名.(1)从中选2名代表,必须有女生的不同选法有多少种?(2)从中选出男、女各2名的不同选法有多少种?(3)从中选4人分别担任四个不同岗位的志愿者,每个岗位一人,且男生中的甲与女生中的乙至少有1人在内,有多少种安排方法?19(12分)已知函数 (1)当时,求曲线在处的切线方程;(2)若恒成立,求实数的取值范围20(12分)将一枚六个面的编号为1,2,3,4,5,6的质地均匀的正方体骰子先后掷两次,记第一次出的点数为,第二次出的点数为,且已知关于、的方程组.(1

5、)求此方程组有解的概率;(2)若记此方程组的解为,求且的概率.21(12分)已知函数,.(1)当时,求函数的极值;(2)讨论函数的单调性.22(10分)已知函数在处有极值(1)求a,b的值;(2)求的单调区间参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】试题分析:设是椭圆的左焦点,由于直线过原点,因此两点关于原点对称,从而是平行四边形,所以,即,设,则,所以,即,又,所以,故选A考点:椭圆的几何性质【名师点睛】本题考查椭圆的离心率的范围,因此要求得关系或范围,解题的关键是利用对称性得出就是,从而得,于是只有由点到直线

6、的距离得出的范围,就得出的取值范围,从而得出结论在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义2、B【解析】分析:先将等式右边化简,然后根据复数相等的条件即可.详解:故选B.点睛:考查复数的除法运算和复数相等的条件,属于基础题.3、D【解析】 不正确,因为垂直于同一条直线的两个平面平行; 不正确,垂直于同一个平面的两个平面平行或相交; 平行于同一条直线的两个平面平行或相交;正确.4、B【解析】先把圆的极坐标方程化为直角坐标方程,确定其圆心的直角坐标再化成极坐标即可【详解】圆化为,,配方为 ,因此圆心直角坐标为,可得圆心的极坐标为故选B【点睛】本题考查极坐标方程与直角坐标方程的转化,点的

7、直角坐标与极坐标的转化,比较基础5、D【解析】由方程的解与函数图象的交点关系得:方程有五个不同的实数根等价于的图象与的图象有5个交点,作图可知,只需与曲线在第一象限有两个交点即可。利用导数求过某点的切线方程得:过原点的直线与相切的直线方程为,即所求的取值范围为,得解【详解】设,则的图象与的图象关于原点对称,方程有五个不同的实数根等价于函数的图象与的图象有5个交点,由图可知,只需与曲线在第一象限有两个交点即可,设过原点的直线与切于点,由,则过原点的直线与相切,又此直线过点,所以,所以,即(e),即过原点的直线与相切的直线方程为,即所求的取值范围为,故选【点睛】本题主要考查了方程的解与函数图象的交

8、点个数问题的关系应用及利用导数求切线方程。6、C【解析】把已知等式变形,利用复数代数形式的乘除运算化简求出z,然后逐一核对四个选项得答案【详解】复数在复平面内表示的点在第二象限,故选C【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题7、B【解析】由等比数列的性质可得,S10,S20S10,S30S20成等比数列即(S20S10)2S10(S30S20),代入可求【详解】由等比数列的性质可得,S10,S20S10,S30S20成等比数列,且公比为 (S20S10)2S10(S30S20)即 解 =20或-10(舍去)故选B【点睛】本题主要考查了等比数列的性质(若Sn为等比数列

9、的前n项和,且Sk,S2kSk,S3kS2k不为0,则其成等比数列)的应用,注意隐含条件的运用8、B【解析】分析:先根据图像求出,即得,也即得结果.详解:因为当时,所以当时,所以的单调减区间是,选B.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,经常转化为解方程或不等式.9、B【解析】建立以点为坐标原点,、所在直线分别为轴、轴、轴的空间直角坐标系,设点,利用,转化为,得出,利用空间向量法求出的表达式,并将代入的表达式,利用二次函数的性质求出的最大值,再由同角三角函数的基本关系求出的最大值【详解】如下图所示,以点为坐标原点,、所在直线分别为轴、轴、轴建立空间直角坐标系,则、,

10、设点,则,则,得,平面的一个法向量为,所以, ,当时,取最大值,此时,也取最大值,且,此时,因此,故选B【点睛】本题考查立体几何的动点问题,考查直线与平面所成角的最大值的求法,对于这类问题,一般是建立空间坐标系,在动点坐标内引入参数,将最值问题转化为函数的问题求解,考查运算求解能力,属于难题10、A【解析】由于函数为偶函数又过(0,0),排除,所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.11、C【解析】根据命题的否定形式可判断出命题的正误;利用反证法可得出命题的真假;设等比数列的公比为,利用等比数列的定义和等比中项的性质可判断出命题的正误;利用特称

11、命题的否定可判断出命题的正误.【详解】对于命题,由于可表示为且,该结论的否定为“或”,所以,命题正确;对于命题,假设且,由不等式的性质得,这与题设条件矛盾,假设不成立,故命题正确;对于命题,设等比数列、的公比为,则,.由等比中项的性质得,则,命题错误;对于命题,由特称命题的否定可知,命题为真命题,故选:C.【点睛】本题考查命题真假的判断,涉及反证法、等比中项以及特称命题的否定,理解这些知识点是解题的关键,考查分析问题和解决问题的能力,属于基础题.12、D【解析】分析:由题意构造函数,结合函数的单调性整理计算即可求得最终结果.详解:令,则:,由,都有成立,可得在区间内恒成立,即函数是区间内单调递

12、减,据此可得:,即,则.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】均值不等式推广;【详解】【点睛】熟练掌握

13、。14、7.【解析】设开始有细胞a个,利用细胞生长规律计算经过1小时、2小时后的细胞数,找出规律,得到经过8小时后的细胞数,根据条件列式求解.【详解】设最初有细胞a个,因为每小时有2个死亡,余下的各个分裂成2个,所以经过1个小时细胞有,经过2个小时细胞有=,经过8个小时细胞有,又,所以,.故答案为7.【点睛】本题考查等比数列求和公式的应用,找出规律、构造数列是解题关键,考查阅读理解能力及建模能力,属于基础题.15、【解析】根据题意,可得函数在上的单调性,结合可得在上的符号,利用函数的奇偶性可得在上,则上,即可分析的解,可得答案【详解】根据题意,若对任意的,且,都有,则在上为增函数,又由,则在上

14、,则在上,又由为奇函数,则在上,则上,或,即或或或解得:,即不等式的解集为;故答案为:【点睛】本题主要考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于中档题16、【解析】利用余弦定理求出,再求F1PF2的面积.【详解】|PF1|PF2|4,又F1PF260,由余弦定理可得|F1F2|2|PF1|2|PF2|22|PF1|PF2|cos6012(|PF1|PF2|)22|PF1|PF2|PF1|PF2|,.【点睛】本题主要考查椭圆的定义和余弦定理,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、

15、(1)(2)函数零点个数为两个【解析】(1)根据导数的几何意义,即可求解曲线在原点处的切线方程;(2)由(1),求得函数的单调性,分类讨论,即可求解函数的零点个数【详解】(1)由题意,函数,则,则,从而曲线在原点处的切线方程为(2)由(1)知,令得或,从而函数单调增区间为,单调减区间为,当时,恒成立,所以在上没有零点;当时,函数在区间单调递减,且,存在唯一零点;当时,函数在区间单调递增,且,存在唯一零点综上,当时,函数零点个数为两个.【点睛】本题主要考查了导数的几何意义求解曲线在某点处的切线方程,以及利用导数研究函数的单调性及其应用,着重考查了分类讨论思想,推理与运算能力,属于基础题18、(1

16、)26;(2)60;(3)2184【解析】(1)采用间接法;(2)采用直接法;(3)先用间接法求出从中选4人,男生中的甲与女生中的乙至少有1人在内的选法种数,再分配到四个不同岗位即可.【详解】(1)从中选2名代表,没有女生的选法有种,所以从中选2名代表,必须有女生的不同选法有种.(2)从中选出男、女各2名的不同选法有种. (3)男生中的甲与女生中的乙至少有1人被选的不同选法有种,将这4人安排到四个不同的岗位共有种方法,故共有种安排方法.【点睛】本题考查排列与组合的综合问题,考查学生的逻辑思想能力,是一道基础题.19、(1);(2)【解析】(1)计算,以及根据函数在某点处导数的几何意义,可得切线

17、斜率,然后根据点斜式,可得结果.(2)利用导数,采用分类讨论的方法,以及判断函数的单调性,利用函数的最大值,可得结果.【详解】(1)当时,所以,则又, 所求切线方程为,即(2)当时,在恒成立,当时,由,得:由,得,函数在上递增,在上递减,要使恒成立,只需满足即可,解得若,由,得; 由,得,函数在单调递增,在单调递减,要使恒成立,只需满足即可,解得综上可得,的取值范围为【点睛】本题考查函数导数的综合应用,难点在于对进行分类讨论,判断函数的单调性,属中档题.20、(1);(2).【解析】(1)先根据方程组有解得关系,再确定取法种数,最后根据古典概型概率公式求结果;(2)先求方程组解,再根据解的情况得关系,进而确定取法种数,最后根据古典概型概率公式求结果.【详解】(1)因为方程组有解,所以而有这三种情况,所以所求概率为;(2)因为且,所以因此即有种情况,所以所求概率为;【点睛】本题考查古典概型概率以及二元一次方程组的解,考查综合分析求解能力,属中档题.21、 (),.()答案见解析.【解析】分析:(1)代入参数值,对函数求导,研究导函数的正负,得到函数的单调性即可;(2)直接对函数求导,因式分解,讨论s的范围,进而得到单调区间.详解:(),.极大值极小值,.(),.点睛:这个题目考查的是函数单调性的研究,研究函数单调性的方法有:定义法,求导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论