2022届云南省普洱市墨江县二中高二数学第二学期期末综合测试模拟试题含解析_第1页
2022届云南省普洱市墨江县二中高二数学第二学期期末综合测试模拟试题含解析_第2页
2022届云南省普洱市墨江县二中高二数学第二学期期末综合测试模拟试题含解析_第3页
2022届云南省普洱市墨江县二中高二数学第二学期期末综合测试模拟试题含解析_第4页
2022届云南省普洱市墨江县二中高二数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某研究机构对儿童记忆能力和识图能力进行统计分析,得到如下数据:记忆能力识图能力由表中数据,求得线性回归方程为,,若某儿童的记忆能力为12时,则他的识图能力约为( )A9.2B9.5C

2、9.8D102现有下面三个命题常数数列既是等差数列也是等比数列;直线与曲线相切.下列命题中为假命题的是( )ABCD3三位女歌手和她们各自的指导老师合影,要求每位歌手与她们的老师站一起,这六人排成一排,则不同的排法数为( )A24B48C60D964高三毕业时,甲,乙,丙等五位同学站成一排合影留念,在甲和乙相邻的条件下,丙和乙也相邻的概率为( )ABCD5有6名选手参加演讲比赛,观众甲猜测:1、2、6号选手中的一位获得第一名;观众乙猜测:4、5、6号选手都不可能获得第一名;观众丙猜测:4号或5号选手得第一名;观众丁猜测:3号选手不可能得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人

3、猜对比赛结果,此人是( )A甲B乙C丙D丁6已知函数若g(x)存在2个零点,则a的取值范围是A1,0)B0,+)C1,+)D1,+)7函数yx42x25的单调递减区间为()A(,1和0,1B1,0和1,)C1,1D(,1和1,)8中国古代数学著作算法统宗巾有这样一个问题:“三百七十八里关,初行健步不为难 日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地”问此人第4天和第5天共走了A60里B48里C36里D24里9已知双曲线C的中心在原点,焦点在轴上,若双曲线C的一条渐近

4、线与直线平行,则双曲线C的离心率为( )ABCD10对任意非零实数,若的运算原理如图所示,则 =( )A1B2C3D411用数学归纳法证明不等式“”时的过程中,由到时,不等式的左边()A增加了一项B增加了两项C增加了两项,又减少了一项D增加了一项,又减少了一项12求值:4cos 50tan 40()ABCD21二、填空题:本题共4小题,每小题5分,共20分。13抛物线上的点到其焦点的距离为_.14已知函数,若,则的值是_.15面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量(单位:千箱)与单位成本(单位:元)的资料进行线性

5、回归分析,得到结果如下:,则销量每增加1千箱,单位成本约下降_元(结果保留5位有效数字)附:回归直线的斜率和截距的最小二乘法公式分别为:,16已知幂函数的图象经过点,则实数的值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列满足,设,数列满足.(1)求证:数列为等差数列;(2)求数列的前项和.18(12分)某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上件产品作为样本算出他们的重量(单位:克)重量的分组区间为,由此得到样本的频率分布直方图,如图所示(1)根据频率分布直方图,求重量超过克的产品数量(2)在上述抽取的件产品中任取件,设为重量

6、超过克的产品数量,求的分布列(3)从流水线上任取件产品,求恰有件产品合格的重量超过克的概率19(12分)已知(1)求;(2)若,求实数的值.20(12分)已知函数f(x)=m(1)当n-m=1时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-3m2x2的两个零点分别为x1,x2(21(12分)已知数列满足:,.(1)求数列的通项公式;(2)设,求.22(10分)某中学对高二甲、乙两个同类班级进行“加强语文阅读理解训练对提高数学应用题得分率有帮助”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得

7、分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:60分及以下6170分7180分8190分91100分甲班(人数)3612159乙班(人数)4716126现规定平均成绩在80分以上(不含80分)的为优秀.(1)由以上统计数据填写列联表,并判断是否有的把握认为“加强语文阅读理解训练对提高数学应用题得分率”有帮助;(2)对甲乙两班60分及以下的同学进行定期辅导,一个月后从中抽取3人课堂检测,表示抽取到的甲班学生人数,求及至少抽到甲班1名同学的概率.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【

8、解析】试题分析:当时考点:回归方程2、C【解析】分析:首先确定的真假,然后确定符合命题的真假即可.详解:考查所给命题的真假:对于,当常数列为时,该数列不是等比数列,命题是假命题;对于,当时,该命题为真命题;对于,由可得,令可得,则函数斜率为的切线的切点坐标为,即,切线方程为,即,据此可知,直线与曲线不相切,该命题为假命题.考查所给的命题:A.为真命题;B.为真命题;C.为假命题;D.为真命题;本题选择C选项.点睛:本题主要考查命题真假的判断,符合问题问题,且或非的运算法则等知识,意在考查学生的转化能力和计算求解能力.3、B【解析】先将三位女歌手和她们各自的指导老师捆绑在一起,记为三个不同元素进

9、行全排,再将各自女歌手和她的指导老师进行全排,运算即可得解.【详解】解:先将三位女歌手和她们各自的指导老师捆绑在一起,记为三个不同元素进行全排,再将各自女歌手和她的指导老师进行全排,则不同的排法数,故选:B.【点睛】本题考查了排列组合中的相邻问题,重点考查了捆绑法,属基础题.4、B【解析】记事件甲乙相邻,事件乙丙相邻,利用排列组合思想以及古典概型的概率公式计算出和,再利用条件概率公式可计算出所求事件的概率【详解】记事件甲乙相邻,事件乙丙相邻,则事件乙和甲丙都相邻,所求事件为,甲乙相邻,则将甲乙两人捆绑,与其他三位同学形成四个元素,排法种数为,由古典概型的概率公式可得.乙和甲丙都相邻,则将甲乙丙

10、三人捆绑,且乙位置正中间,与其他两位同学形成三个元素,排法种数为,由古典概型的概率公式可得,由条件概率公式可得,故选B.【点睛】本题考查条件概率的计算,解这类问题时,要弄清各事件事件的关系,利用排列组合思想以及古典概型的概率公式计算相应事件的概率,并灵活利用条件概率公式计算出所求事件的概率,考查计算能力,属于中等题5、B【解析】分别假设甲、乙、丙、丁猜对比赛结果,逐一判断得到答案.【详解】假设甲猜对比赛:则观众丁猜测也正确,矛盾假设乙猜对比赛:3号得第一名,正确假设丙猜对比赛:则观众丁猜测也正确,矛盾假设丁猜对比赛:则观众甲和丙中有一人正确,矛盾故答案选B【点睛】本题考查了逻辑推理,意在考查学

11、生的逻辑推理能力.6、C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函

12、数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.7、A【解析】对函数求导,研究导函数的正负,求使得导函数小于零的自变量的范围,进而得到单调区间.【详解】y4x34x4x(x21),令y0,得单调递减区间为(,1),(0,1).故答案为A.【点睛】这个题目考查了利用导数求函数的单调区间,对函数求导,导函数大于0,解得函数单调增区间;导函数小于0得到函数的减区间;注意函数的单调区间一定要写成区间的形式.8、C【解析】每天行走的里程数是公比为的等比数列,且前和为,故可求出数列的通项后可

13、得.【详解】设每天行走的里程数为,则是公比为的等比数列,所以,故(里),所以(里),选C.【点睛】本题为数学文化题,注意根据题设把实际问题合理地转化为数学模型,这类问题往往是基础题.9、A【解析】分析:根据双曲线的一条渐近线与直线平行,利用斜率相等列出的关系式,即可求解双曲线的离心率.详解:双曲线的中心在原点,焦点在轴上,若双曲线的一条渐近线与直线平行,可得,即,可得,离心率,故选A.点睛:本题主要考查双曲线的定义及离心率,属于难题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:直接求出,从而求出;构造的齐次式,求出;采用离心率的定义以及圆锥曲线的定义来求解.

14、10、A【解析】分析:由程序框图可知,该程序的作用是计算分段函数函数值,由分段函数的解析式计算即可得结论.详解:由程序框图可知,该程序的作用是计算函数值,因为,故选A.点睛:算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.11、C【解析】解:n=k时,左边=1 /k+1 +1/ k+2 +1/ k+k ,n=k时,左边=1 /(k+1)+1 +1 /(k+1)+2 +1 /

15、(k+1)+(k+1)=(1/ k+1 +1 /k+2 +1/ k+k )-1 /k+1 +1 /2k+1 +1/ 2k+2 故选C12、C【解析】原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果【详解】4cos50tan40=4sin40tan40=故选C【点睛】本题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键二、填空题:本题共4小题,每小题5分,共20

16、分。13、5【解析】先计算抛物线的准线,再计算点到准线的距离.【详解】抛物线,准线为: 点到其焦点的距离为点到准线的距离为5故答案为5【点睛】本题考查了抛物线的性质,意在考查学生对于抛物线的理解.14、【解析】当时,求出;当时,无解.从而,由此能求出结果.【详解】解:由时,是减函数可知,当,则,所以,由得,解得,则.故答案为:.【点睛】本题考查函数值的求法,属于基础题.15、1.818 2【解析】根据所给的数据和公式可以求出回归直线方程,根据回归直线斜率的意义可以求出销量每增加1千箱,单位成本约下降多少元.【详解】由所给的数据和公式可求得:,所以线性回归方程为:,所以销量每增加1千箱,单位成本

17、约下降元.故答案为:1.818 2【点睛】本题考查了求线性回归方程,考查了直线斜率的意义,考查了数学运算能力.16、【解析】由幂函数的定义,把代入可求解.【详解】 点在幂函数的图象上, ,故答案为: 【点睛】本题考查幂函数的定义.幂函数的性质: (1)幂函数在上都有定义;(2)幂函数的图象过定点;(3)当时,幂函数的图象都过点和,且在上单调递增;(4)当时,幂函数的图象都过点,且在上单调递减;(5)当为奇数时,幂函数为奇函数;当为偶数时,幂函数为偶函数三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)【解析】试题分析:(1)由可得,则数列为等比数列且公比为

18、2.可得数列的通项公式.并将代入用对数的运算法则将其化简.再证为常数.(2)数列是一个等差数列乘以一个等比数列,用错位相减法求数列的前项和.试题解析:(1)由已知可得, 2分3分4分为等差数列,其中 6分(2) 7分 8分- 得12分考点:1等比数列的定义和通项公式;2等差数列的定义和通项公式;3错位想减法求数列的和.【方法点睛】本题涉及等差数列,等比数列,以及求和的方法,属于基础题型,数列求和的方法主要包括:(1)分组求和法,把一个数列分成几个可以直接求和的数列和的形式;(2)裂项相消法:将数列写成的形式,包括,等形式;(3)错位相减法:一个等差数列乘以一个等比数列的数列,采用错位相减法求和

19、;(4)倒序相加法求和:如果一个数列与首末两项等距离的两项之和等于首末两项之和时,可采用倒序相加法;(5)其他法,形如型数列,可发现规律求和,或有些数列具有周期性,可利用函数的周期性求和.18、(1)件;(2)(3)【解析】(1)根据频率分布直方图得到超过克的频率,再求出产品数量;(2)先得到可取的值,再分别计算每个值的概率,写出分布列;(3)根据题意得到所取的件产品中,件超过克,件不超过克,从而得到所求的概率.【详解】(1)根据频率分布直方图可知:重量超过克的频率为:,所以重量超过克的产品数量为(件)(2)可取的值为,所以的分布列为:(3)利用样本估计总体,该流水线上重量超过克的概率为,令为

20、任取5件产品中重量超过克的产品数量,则所以所求概率为.【点睛】本题考查根据频率分布直方图求频数,随机变量的分布列,求随机事件的概率,属于简单题.19、(1);(2)【解析】分析:(1)化简复数为代数形式后,再结合复数模的公式,即可求解;(2)化简复数z为 1+i,由条件可得 a+b+(a+2)i=1i,解方程求得a,b的值详解:(1)化简得 (2) 解得点睛:本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.20、(1)见解析;(2)见解析【解析】(1)先求导数,再根据导函数零点分类讨论,最后根据导函数符号确定单调区间,(2)先求导数得函数g(x)的图像在x=x【详解】(1)所以当m0时,f(x)=0 x=1,所以增区间(0,1)当0m1当m=1时,f(x)0,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论