2022届江苏省扬大附中东部分校数学高二下期末调研模拟试题含解析_第1页
2022届江苏省扬大附中东部分校数学高二下期末调研模拟试题含解析_第2页
2022届江苏省扬大附中东部分校数学高二下期末调研模拟试题含解析_第3页
2022届江苏省扬大附中东部分校数学高二下期末调研模拟试题含解析_第4页
2022届江苏省扬大附中东部分校数学高二下期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1长方体中,是对角线上一点,是底面上一点,若,则的最小值为( )ABCD2若函数yf(x)的导函数yf(x)的图象如图所示,则yf(x)的图象可能( )ABCD3已知(为虚单位),则复数在复平面上所对应的点在()A第一象限B第二象限C第三象限

2、D第四象限4已知是以为周期的偶函数,当时,那么在区间内,关于的方程(且)有个不同的根,则的取值范围是( )ABCD5已知随机变量满足,则下列说法正确的是( )A,B,C,D,6在ABC中内角A,B,C所对各边分别为,且,则角=A60B120C30D1507若函数的定义域为,则函数的定义域为()ABCD8 “”是“圆:与圆:外切”的( )A必要不充分条件B充分不必要条件C充要条件D既不充分条件也不必要条件9若对任意正数x,不等式恒成立,则实数的最小值( )A1BCD10一个算法的程序框图如图所示,如果输出的值是1,那么输入的值是 ( )A-1B2C-1或2D1或-211已知将函数的图象向左平移个

3、单位长度后得到的图象,则在上的值域为( )ABCD12已知定义在上的可导函数的导函数为,满足,且,则不等式(为自然对数的底数)的解集为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,满足约束条件,则目标函数的最小值为_14平面直角坐标系中,若点经过伸缩变换后的点Q,则极坐标系中,极坐标与Q的直角坐标相同的点到极轴所在直线的距离等于_15设随机变量的概率分布列如下图,则_123416已知顶点在原点的抛物线的焦点与椭圆的右焦点重合,则抛物线的方程为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设,函数.(1) 若,求曲线在处的切线方程;(2)

4、求函数单调区间(3) 若有两个零点,求证: .18(12分)已知函数.(I)若,求实数的值;()判断的奇偶性并证明;()设函数,若在上没有零点,求的取值范围.19(12分)已知直线,(为参数),(为参数),(1)若,求的值;(2)在(l)的条件下,圆(为参数)的圆心到直线的距离.20(12分)选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为,(为参数),圆的标准方程为.以坐标原点为极点, 轴正半轴为极轴建立极坐标系.(1)求直线和圆的极坐标方程;(2)若射线与直线的交点为,与圆的交点为,且点恰好为线段的中点,求的值.21(12分)函数(为实数).(1)若,求证:函数在上是增函数;(

5、2)求函数在上的最小值及相应的的值;(3)若存在,使得成立,求实数的取值范围.22(10分)(选修4-4.坐标系与参数方程)在直角坐标系中,曲线的参数方程是(为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)写出曲线的普通方程和直线的直角坐标方程;(2)设点,直线与曲线相交于两点,且,求实数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】将绕边旋转到的位置,使得平面和平面在同一平面内,则到平面的距离即为的最小值,利用勾股定理解出即可【详解】将绕边旋转到的位置,使得平面和

6、平面在同一平面内,过点作平面,交于点,垂足为点,则为的最小值,故选A【点睛】本题考查空间距离的计算,将两折线段长度和的计算转化为同一平面上是解决最小值问题的一般思路,考查空间想象能力,属于中等题2、C【解析】根据导数与函数单调性的关系,判断函数的单调性即可.【详解】由当时,函数单调递减,当时,函数单调递增,则由导函数的图象可知:先单调递减,再单调递增,然后单调递减,排除,且两个拐点(即函数的极值点)在x轴上的右侧,排除B.故选:.【点睛】本题主要考查的是导数与函数的单调性,熟练掌握函数的导数与函数单调性的关系是解题的关键,是基础题.3、B【解析】由得,再利用复数的除法法则将复数表示为一般形式,

7、即可得出复数所表示的点所在的象限.【详解】由得,因此,复数在复平面上对应的点在第二象限,故选B.【点睛】本题考查复数的几何意义,考查复数对应的点所在的象限,解题的关键就是利用复数的四则运算将复数表示为一般形式,考查计算能力,属于基础题.4、B【解析】由已知,函数在区间的图象如图所示,直线y(且)表示过定点的直线,为使关于的方程(且)有个不同的根,即直线与函数的图象有4个不同的交点.结合图象可知,当直线介于直线和直线之间时,符合条件,故选.考点:函数的奇偶性、周期性,函数与方程,直线的斜率,直线方程.5、D【解析】分析:利用期望与方差的性质与公式求解即可.详解: 随机变量满足,所以,解得,故选D

8、.点睛:已知随机变量的均值、方差,求的线性函数的均值、方差和标准差,可直接用的均值、方差的性质求解.若随机变量的均值、方差、标准差,则数的均值、方差、标准差.6、A【解析】分析:利用余弦定理即可。详解:由余弦定理可知,所以。点睛:已知三边关系求角度,用余弦定理。7、B【解析】由抽象函数的定义域,对数的真数大于零,分母不为零,列出不等式,从而求出的定义域。【详解】由题可得: ,解得且,所以函数的定义域为;故答案选B【点睛】本题主要抽象函数与初等函数的定义域,属于基础题。8、B【解析】由圆:与圆:外切可得,圆心 到圆心 的距离是 求出 的值,然后判断两个命题之间的关系。【详解】由圆:与圆:外切可得

9、,圆心 到圆心 的距离是即 可得 所以“”是“圆:与圆:外切”的充分不必要条件。【点睛】本题考查了两个圆的位置关系及两个命题之间的关系,考查计算能力,转化思想。属于中档题。9、D【解析】分析:由题意可得恒成立,利用基本不等式求得的最大值为,从而求得实数的最小值详解:由题意可得恒成立由于(当且仅当时取等号),故 的最大值为,即得最小值为,故选D点睛:本题主要考查函数的恒成立问题,基本不等式的应用,属于基础题10、C【解析】根据条件结构,分,两类情况讨论求解.【详解】当时,因为输出的是1,所以,解得.当时,因为输出的是1,所以,解得.综上:或.故选:C【点睛】本题主要考查程序框图中的条件结构,还考

10、查了分类讨论的思想和运算求解的能力,属于基础题.11、B【解析】解析:因,故,因,故,则,所以,应选答案B12、B【解析】令 所以 ,选B.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】,作出约束条件表示的可行域,如图,平移直线,由图可知直线经过点时,取得最小值,且,故答案为.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是

11、虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14、3.【解析】由点P的直角坐标求出伸缩变换后的点Q的坐标,将点Q的坐标看作极坐标,根据极坐标的性质距离为,将极坐标代入即可求出距离【详解】点P经伸缩变换后,点Q的坐标为,将点Q看作极坐标,则距离为.【点睛】本题考查点的伸缩变换以及极坐标的性质,注意题目中给出的点P的坐标为直角坐标,不要看错题目,并且注意距离为正数,要有绝对值.15、【解析】依题意可知,根据分布列计算可得;【详解】解:依题意可得故答案为:【点睛】本题考查离散型随机变量的分

12、布列与和概率公式的应用,属于基础题.16、【解析】求得抛物线的右焦点坐标,由此求得抛物线方程.【详解】椭圆的,故,故,所以椭圆右焦点的坐标为,故,所以,所以抛物线的方程为.故答案为:【点睛】本小题主要考查椭圆焦点的计算,考查根据抛物线的焦点计算抛物线方程,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析;(3)见解析【解析】分析:(1)求出,由的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(2)求出,分两种情况讨论的范围,在定义域内,分别令,可得函数的增区间,可得函数的减区间;(3)原不等式等价于 令,则,于是

13、,利用导数可证明,从而可得结果.详解:在区间上,. (1)当时,则切线方程为,即(2)若,则,是区间上的增函数, 若,令得: .在区间上, ,函数是增函数; 在区间上, ,函数是减函数; (3)设 ,原不等式 令,则,于是.设函数 ,求导得: 故函数是上的增函数, 即不等式成立,故所证不等式成立.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意

14、义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.18、(I);()为奇函数,证明见解析;().【解析】()利用代入原式即得答案;()找出与的关系即可判断奇偶性;()函数在上没有零点等价于方程在上无实数解,再设,求出最值即得答案.【详解】()因为,即:,所以.()函数为奇函数.令,解得,函数的定义域关于原点对称,又所以,为奇函数.()由题意可知,函数在上没有零点等价于方程在上无实数解,设,则,在上单调递减,在上单调递增,在上取得极小值,也是最小值,的取值范围为.【点睛

15、】本题主要考查函数的奇偶性,利用导函数计算函数最值,意在考查学生的转化能力,分析能力,计算能力,难度中等.19、 (1)-1;(2)【解析】(1)将两条直线的参数方程化为普通方程后,利用两条直线垂直的条件列式可解得.(2)将参数方程化为普通方程后,得圆心坐标,再由点到直线的距离公式可得.【详解】(1)由消去参数得,由消去参数得,因为,所以,解得.(2)由(1)得直线,由消去参数得,其圆心为,由点到直线的距离公式得圆心到直线的距离为:.【点睛】本题考查了参数方程化普通方程,两条直线垂直的条件,点到直线的距离公式,属于基础题.20、(1).(2)【解析】分析:(1)将直线的参数方程利用代入法消去参

16、数,可得直线的直角坐标方程,利用,可得直线的极坐标方程,圆的标准方程转化为一般方程,两边同乘以利用利用互化公式可得圆的极坐标方程;(2)联立可得,根据韦达定理,结合中点坐标公式可得,将代入,解方程即可得结果.详解:(1)在直线的参数方程中消去可得,将,代入以上方程中,所以,直线的极坐标方程为.同理,圆的极坐标方程为.(2)在极坐标系中,由已知可设,.联立可得,所以.因为点恰好为的中点,所以,即.把代入,得,所以.点睛:消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:代入消元法;加减消元法;乘除消元法;三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.21

17、、(1)函数在上是增函数;(2)见解析;(3).【解析】试题分析:(1)当时,在(0,+)上恒成立,故函数在(1,+)上是增函数;(2)求导),当x1,e时,分,三种情况得到函数f(x)在1,e上是单调性,进而得到f(x)min;(3)由题意可化简得到,令,利用导数判断其单调性求出最小值为试题解析:(1)当时,其定义域为,当时,恒成立,故函数在上是增函数.(2),当时,若,在上有(仅当,时,),故函数在上是增函数,此时;若,由,得,当时,有,此时在区间上是减函数;当时,有,此时,在区间上是增函数,故;若,在上有(仅当,时,),故函数在上是减函数,此时综上可知,当时,的最小值为1,相应的的值为1;当时,的最小值为,相应的值为;当时,的最小值为,相应的的值为.(3)不等式可化为,因为,所以,且等号不能同时取,所以,即,所以,令,则,当时,从而(仅当时取等号),所以在上为增函数,所以的最小值为,所以实数的取值范围为.点睛:不等式的存在问题即为不等式的有解问题,常用的方法有两个:一是,分离变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论