2022-2023学年山西省晋中市西六支中学高三数学理月考试题含解析_第1页
2022-2023学年山西省晋中市西六支中学高三数学理月考试题含解析_第2页
免费预览已结束,剩余4页可下载查看

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年山西省晋中市西六支中学高三数学理月考试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的单调递减区间为( )A . B . C. D. 参考答案:B略2. 某人随机地在如图所示正三角形及其外接圆区域内部投针(不包括三角形边界及圆的边界),则针扎到阴影区域(不包括边界)的概率为A. B. C. D.以上全错参考答案:B试题分析:设正三角形的边长为,圆的半径为,则正三角形的面积为,由正弦定理得得,圆的面积,有几何概型的概率计算公式得概率,故答案为B.考点:几何概型的概率计算.3. 函数的零点所在的区间是

2、A.B.C.D.参考答案:4. 的展开式中的系数为( )A B C D参考答案:A的展开通项式为,即的系数为5. 下列四个结论:若是真命题,则可能是真命题;命题“”的否定是“”;“且”是“”的充要条件;当时,幂函数在区间上单调递减.其中正确结论的个数是( )(A)0个 (B) 1个 (C)2个 (D)3个参考答案:B若是真命题,则和同时为真命题,必定是假命题;命题“”的否定是“”;“且”是“”的充分不必要条件;,当时,所以在区间上单调递减. 选B6. 已知数列为等差数列,且,则( )(A)45(B)43(C)42(D)40参考答案:C7. 已知斐波那契数列的前七项为:1、1、2、3、5、8,1

3、3.大多数植物的花,其花瓣数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花3朵,花瓣总数为99,假设这种雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )层.A. 5B. 6C. 7D. 8参考答案:C【分析】每朵玫瑰花的花瓣总数为33,计算斐波那契数列的前项和,比较即得。【详解】由题意每朵玫瑰花的花瓣总数为33,而斐波那契数列的前项和依次为,因此一朵该种玫瑰花最可能有7层。故选:C。【点睛】本题考查数列的前项和的概念。属于数列应用的基础题。8. 已知P为三角形ABC内部任一点(不包括边界),满足()?(+2)=0,则ABC必定是( )A直角三角形B

4、等边三角形C等腰直角三角形D等腰三角形参考答案:D【考点】平面向量数量积的运算【专题】平面向量及应用【分析】由向量的运算和已知条件可得=0,即|=|,可得结论【解答】解:=,+2=+=+,()?(+2)=0,()?(+)=0,=0,即|=|,ABC一定为等腰三角形故选D【点评】本题考查向量的三角形法则,向量垂直于数量积的关系以及等腰三角形的定义,属中档题9. 设是虚数单位,则复数=( )A BC D 参考答案:A命题意图:本题考查复数的基本运算,简单题10. 已知抛物线与圆,过点作直线,自上而下顺次与上述两曲线交于点,则下列关于的值的说法中,正确的是( )A.等于1B.等于16C.最小值为4D

5、.最大值为4参考答案:A二、 填空题:本大题共7小题,每小题4分,共28分11. 计算:_参考答案:【测量目标】数学基本知识和基本技能/理解或掌握初数学中有关方程与代数的基本知识.【知识内容】方程与代数/数列与数学归纳法/数列的极限.【试题分析】,故答案为.12. 若直线与双曲线始终有公共点,则取值范围是 。参考答案: 当时,显然符合条件;当时,则13. (坐标系与参数方程选做题)在直角坐标平面内,以坐标原点O为极点、x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为,曲线C的参数方程为(为参数),则点M到曲线C上的点的距离的最小值为 。参考答案:略14. 在ABC中,a,b,c分别为角A,

6、B,C的对边,已知a=2且bcosC+ccosB=2b,则b= 参考答案:1【考点】HP:正弦定理【分析】由正弦定理,两角和的正弦函数公式,三角形内角和定理,诱导公式化简已知等式可得sinA=2sinB,进而可求a=2b=2,从而可求b的值【解答】解:a=2且bcosC+ccosB=2b,由正弦定理可得:sinBcosC+sinCcosB=sin(B+C)=sinA=2sinB,a=2b=2,b=1故答案为:1【点评】本题主要考查了正弦定理,两角和的正弦函数公式,三角形内角和定理,诱导公式在解三角形中的应用,考查了转化思想,属于基础题15. 记集合,构成的平面区域分别为M,N,现随机地向M中抛

7、一粒豆子(大小忽略不计),则该豆子落入N中的概率为参考答案:【考点】几何概型【专题】计算题;概率与统计【分析】平面区域M、N,分别为圆与直角三角形,面积分别为,利用几何概型的概率公式解之即可【解答】解:集合构成的平面区域M、N,分别为圆与直角三角形,面积分别为,随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为=答案为:【点评】本题主要考查了几何概型的概率,确定区域面积是关键,属于中档题16. 已知,则大小关系由小到大排列为_.参考答案:17. 集合A=2,0,1,6,B=x|x+a0,xR,A?B,则实数a的取值范围是参考答案:(0,+)【考点】集合的包含关系判断及应用【分析】

8、B=x|x+a0,xR=(a,+),又A?B,可得a0,解出即可得出【解答】解:B=x|x+a0,xR=(a,+),又A?B,a0,a0故答案为:(0,+)三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.参考答案:解:记Ai表示事件:同一工作日乙、丙中恰有i人

9、需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.E表示事件:同一工作日4人需使用设备.F表示事件:同一工作日需使用设备的人数大于k.(1)D=A1BC+A2B+A2CP(B)=0.6,P(C)=0.4,P(Ai)=.所以P(D)=P(A1BC+A2B+A2C)= P(A1BC)+P(A2B)+P(A2C)= P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P()P(C)=0.31.(2)由(1)知,若k=2,则P(F)=0.310.1.又E=BCA2,P(E)=P(BCA2)= P(B)P(C)P(A2)=0.

10、06;若k=3,则P(F)=0.060.1.所以k的最小值为3.19. 设函数f(x)=|x+2|x2|(I)解不等式f(x)2;()当xR,0y1时,证明:|x+2|x2|参考答案:【考点】绝对值不等式的解法【分析】()运用绝对值的定义,去掉绝对值,得到分段函数,再由各段求范围,最后求并集即可;(II)由分段函数可得f(x)的最大值,再由基本不等式求得的最小值,即可得证【解答】()解:由已知可得:,由x2时,42成立;2x2时,2x2,即有x1,则为1x2所以,f(x)2的解集为x|x1;(II)证明:由()知,|x+2|x2|4,由于0y1,则=()y+(1y)=2+2+2=4,则有20.

11、 (本小题满分14分)已知,设函数2,4,6(1)求的最小正周期及单调递增区间;(2)当时,求的值域. 参考答案:解:(1) 的最小正周期为 4分由得的单调增区间为 8分(2)由(1)知又当 故 从而 的值域为 14分本试题主要是考查了三角函数的图像与性质的运用。(1)将函数化简为单一函数, ,然后运用周期公式得到结论。(2)由(1)知,结合定义域求解得到,根据函数图像得到结论。21. 已知函数为实数。(1)当时,求函数的单调增区间;(2)若在闭区间-1,1上为减函数,求a的取值范围。参考答案:略22. (本小题满分12分)如图ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC平面ABC ,,BE (1)证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论