




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 高中高三数学教案模板高中高三数学教案模板1 一:说教材 平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的根底上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的方法。本节内容也是全章重要内容之一。 二:说学习目标和要求 通过本节的学习,要让学生掌握 (1):平面向量数量积的坐标表示。 (2):平面两点间的距离公式。 (3):向量垂直的坐标表示的充要条件。 以及它们的一些简单应用,以上三点也是本节课
2、的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。 三:说教法 在教学过程中,我主要采用了以下几种教学方法: (1)启发式教学法 因为本节课重点的坐标表示公式的推导相比照拟容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。 (2)讲解式教学法 主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程! 主要辅助教学的手段(powerpoint) (3)讨论式教学法 主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析
3、、解决问题以及创新能力。 四:说学法 学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而到达及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题! 五:说教学过程 这节课我准备这样进行: 首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量? 继续提出问题:假设知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢? 引导学生自己推导平面向量数量积的坐标表示公式,在
4、此公式根底上还可以引导学生得到以下几个重要结论: (1) 模的计算公式 (2)平面两点间的距离公式。 (3)两向量夹角的余弦的坐标表示 (4)两个向量垂直的标表示的充要条件 第二局部是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。 例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题根底上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比拟简单,但表达了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判
5、断相应的两条直线是否垂直的重要方法之一。 例题3是在例2的根底上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。 再配以练习,让学生能熟练的应用公式,掌握今天所学内容。 高中高三数学教案模板2 一、教学目标 (一)知识与技能 1、进一步熟练掌握求动点轨迹方程的根本方法。 2、体会数学实验的直观性、有效性,提高几何画板的操作能力。 (二)过程与方法 1、培养学生观察能力、抽象概括能力及创新能力。 2、体会感性到理性、形象到抽象的思维过程。 3、强化类比、联想的方法,领会方程、数形结合等思想。 (三)情感态度价值观 1、感受动点轨迹的动态美、和谐美、对称美 2、
6、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气 二、教学重点与难点 教学重点:运用类比、联想的方法探究不同条件下的轨迹 教学难点:图形、文字、符号三种语言之间的过渡 三、教学方法和手段 【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此根底上,提供应学生交流的时机,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。 【教学手段】利用教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形
7、成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。 【教学模式】重点中学实施素质教育的课堂模式创设情境、激发情感、主动发现、主动开展。 四、教学过程 _ 1、创设情景,引入课题 生活中我们四处可见轨迹曲线的影子 【演示】这是美丽的城市夜景图 【演示】许多人认为天体运行的轨迹都是圆锥曲线, 研究说明,天体数目越多,轨迹种类也越多 【演示】建筑中也有许多美丽的轨迹曲线 设计意图:让学生感受数学就在我们身边,感受轨迹 曲线的动态美、和谐美、对称美,激发学习兴趣。 _ 2、激发情感,引导探索 靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人
8、是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1; 例1、线段长为,两个端点和分别在轴和轴上滑动,求线段的中点的轨迹方程。 第一步:让学生借助画板动手验证轨迹 第二步:要求学生求出轨迹方程 法一:设,那么 由得, 化简得 法二:设,由得 化简得 法三:设, 由点到定点的距离等于定长, 根据圆的定义得; 第三步:复习求轨迹方程的一般步骤 (1)建立适当的坐标系 (2)设动点的坐标M(x,y) (3)列出动点相关的约束条件p(M) (4)将其坐标化并化简,f(x,y)=0 (5)证明 其中,最关键的一步是根据题意寻求等
9、量关系,并把等量关系坐标化 设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回忆求轨迹方程的一般步骤,到达熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。 3、主动发现、主动开展 由上述例1可知,如果人站在梯子中间,那么他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究M不是中点时的轨迹。 第一步:利用平台展示学生得到的轨迹(教师有意识的整合在一起) 设计意图:借助数学实验,把原本属于教师行为的设疑激趣复原于学生,让学生自己在实践过程中发
10、现疑问,更容易激发学生学习的热情,促使他们主动学习。 第二步:分解动作,向学生提出3个问题: 问题1:当M位置不同时,线段BM与MA的大小关系如何? 问题2、表达BM与MA大小关系还有什么常见的形式? 问题3、你能类比例1把这种数量关系表达出来吗? 第三步:展示学生归纳、概括出来的数学问题 1、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。 2、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。 3、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨
11、迹方程。(说明是什么轨迹) 第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成 4、合作探究、实现创新 改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点) 学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。 5、布置作业、实现拓展 高中高三数学教案模板3 教学目标: 1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系. 2.会求一些简单函数的反函数. 3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识. 4.进一步完善学
12、生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力. 教学重点:求反函数的方法. 教学难点:反函数的概念. 教学过程: 教学活动 设计意图一、创设情境,引入新课 1.复习提问 函数的概念 y=f(x)中各变量的意义 2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容. 3.板书课题 由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去反函数
13、这一概念的神秘面纱,也可使学生知道学习这一概念的必要性. 二、实例分析,组织探究 1.问题组一: (用投影给出函数与;与()的图象) (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.) (2)由,y能否求x? (3)是否是一个函数?它与有何关系? (4)与有何联系? 2.问题组二: (1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数? (2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是
14、同一函数? (3)函数 ()的定义域与函数()的值域有什么关系? 3.渗透反函数的概念. (教师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力. 通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在最近开展区设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定根底. 三、师生互动,归纳定义 1.(根据上述实例,教师与学生共同归纳出反函数的定义) 函数y=f(x)(xA) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x
15、= j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y C)叫做函数y=f(x)(xA)的反函数.记作: .考虑到用 x表示自变量, y表示函数的习惯,将中的x与y对调写成. 2.引导分析: 1)反函数也是函数; 2)对应法那么为互逆运算; 3)定义中的如果意味着对于一个任意的函数y=f(x)来说不一定有反函数; 4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域; 5)函数y=f(x)与x=f(y)互为反函数; 6)要理解好符号
16、f; 7)交换变量x、y的原因. 3.两次转换x、y的对应关系 (原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.) 4.函数与其反函数的关系 高中高三数学教案模板4 教学目标 (1)正确理解排列的意义。能利用树形图写出简单问题的所有排列; (2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列; (3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数; (4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力; (5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的
17、学习态度。 教学建议 一、知识结构 二、重点难点分析 本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的根本思想方法贯穿在解决排列应用问题当中. 从n个不同元素中任取m(mn)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素中任取m(mn)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的
18、排列数.排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数. 公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好 的推导. 排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力. 在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比拟直观,教学上要充分利用,要求学生作题时也应尽量采用. 在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分
19、析问题的能力,在根本掌握之后,可以逐渐地不作这方面的要求. 三、教法建议 在讲解排列数的概念时,要注意区分“排列数与“一个排列这两个概念.一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种: ab,ac,ba,bc,ca,cb, 其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数. 排列的定义中包含两个根本内容,一是“取出元素,二是“按一定顺序排列. 从定义知,只有当元素完
20、全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素局部相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列. 在定义中“一定顺序就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别. 在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列. 要特别注意,不加特殊说明,本章不研究重复排列问题. 关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导 , ,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的. 导出公式
21、 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n、“m比拟复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共m个因数相乘.这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘. 公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)
22、为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释. 建议应充分利用树形图对问题进行分析,这样比拟直观,便于理解. 学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求. 高中高三数学教案模板5 教学目标 (1)使学生正确理解组合的意义,正确区分排列、组合问题; (2)使学生掌握组合数的计算公式、组合数的性质用组合数与排列数之间的关系; (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力; (4)通过对排列
23、、组合问题求解与剖析,培养学生学习兴趣和思维深刻性,学生具有严谨的学习态度。 教学建议 一、知识结构 二、重点难点分析 本小节的重点是组合的定义、组合数及组合数的公式,组合数的性质。难点是解组合的应用题。突破重点、难点的关键是对加法原理与乘法原理的掌握和应用,并将这两个原理的根本思想贯穿在解决组合应用题当中。 组合与组合数,也有上面类似的关系。从n个不同元素中任取m(mn)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合。所有这些不同的组合的个数叫做组合数。从集合的角度看,从n个元素的有限集中取出m个组成的一个集合(无序集),相当于一个组合,而这种集合的个数,就是相应的组合数。 解排
24、列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步.切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘). 三、教法设计 1.对于根底较好的学生,建议把排列与组合的概念进行比照的进行学习,这样有利于搞请这两组概念的区别与联系. 2.学生与老师可以合编一些排列组合问题,如“45人中选出5人当班干部有多少种选法?与“45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法?这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,教师要引导学生识别哪个是排列问题,哪个是组合问题.这样既调动了学生学习的积极性,又在编题辨题中
25、澄清了概念. 为了理解排列与组合的概念,建议大家学会画排列与组合的树图.如,从a,b,c,d 4个元素中取出3个元素的排列树图与组合树图分别为: 排列树图 由排列树图得到,从a,b,c,d 取出3个元素的所有排列有24个,它们分别是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.dca,dcb. 组合树图 由组合树图可得,从a,b,c,d中取出3个元素的组合有4个,它们是(abc),(abd),(acd),(bcd). 从以上两组树图清楚的告诉我们,排列树图是对称的,组合图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的时机,哪一个都有在第二位的时机,哪一个都有在第三位的时机,而组合只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样组合就有了自己的树图. 学会画组合树图,不仅有利于理解排列与组合的概念,还有助于推导组合数的计算公式. 3.排列组合的应用问题,教师应从简单问题问题入手,逐步到有一个附加条件的单纯排列问题或组合问题,最后在设及排列与组合的综合问题. 对于每一道题目,教师必须先让学生独立思考,在进行全班讨论,对于学生的每一种解法,教师要先让学生判断正误,在给
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 站内志愿服务管理考核试卷
- 机床结构优化技术考核试卷
- 创业投资市场竞争优势分析考核试卷
- 电气设备光电子器件考核试卷
- 天体物理观测与实践考核试卷
- 复印技术在纸箱包装印刷的重要性考核试卷
- 硅冶炼操作技能培训考核试卷
- 纸板制造中的废纸回收利用技术考核试卷
- 江西应用科技学院《工程师管理(全英文)》2023-2024学年第二学期期末试卷
- 吉林铁道职业技术学院《大数据审计实务》2023-2024学年第二学期期末试卷
- 【员工关系管理研究国内外文献综述2800字】
- 外派劳务人员基本情况表(劳工表)
- 部编版 八年级下册语文 第五单元复习课件
- 六年级语文下册阅读及参考答案(12篇)
- ERP实施方法(实施顾问的基本功)
- 个人教师述职报告PPT模板下载
- 家鸽的解剖课件
- GB 7101-2022食品安全国家标准饮料
- GB/T 35164-2017用于水泥、砂浆和混凝土中的石灰石粉
- GB/T 17622-2008带电作业用绝缘手套
- GB/T 15343-2012滑石化学分析方法
评论
0/150
提交评论