数学版七年级数学上册期末测试卷及答案_第1页
数学版七年级数学上册期末测试卷及答案_第2页
数学版七年级数学上册期末测试卷及答案_第3页
数学版七年级数学上册期末测试卷及答案_第4页
数学版七年级数学上册期末测试卷及答案_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学版七年级数学上册期末测试卷及答案一、选择题.下列判断正确的是()A. 3/尻与bc02不是同类项B,电上的系数是25C.D.2.A.B.单项式-x/z的次数是53x2-y+5xy5是二次三项式下列判断正确的是()有理数的绝对值一定是正数.如果两个数的绝对值相等,那么这两个数相等.C.D.2.A.B.单项式-x/z的次数是53x2-y+5xy5是二次三项式下列判断正确的是()有理数的绝对值一定是正数.如果两个数的绝对值相等,那么这两个数相等.C.如果一个数是正数,那么这个数的绝对值是它本身.D.如果一个数的绝对值是它本身,那么这个数是正数.3. 一周时间有604800秒,604800用科学记

2、数法表示为(A. 6048xlO2B. 6.048xlO5C. 6.048xlO6)D. 0.6048xlO64.在实数:3.14159,亚3, M后1一,0.1313313331.7(每2个1之间依次多一个3)中,无理数的个数是()1个2个1个2个3个4个5.下列说法中正确的有()5.下列说法中正确的有()A.连接两点的线段叫做两点间的距离B.过一点有且只有一条直线与已知直线垂直C,对顶角相等D.线段AB的延长线与射线BA是同一条射线6. 一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后, 分由乙独做全部完成,设乙独做X天,由题意得方程()剩下的部A.104x-4+=115

3、B.A.104x-4+=115B.104 x + 4+=115x + 4 C.T =11015x + 4D.10 x=115.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,像这样,则20条直线相交最多交D. 380D. 380.植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道 理应是()A.两点确定一条直线B,两点之间,线段最短c.直线可以向两边延长D.两点之间线段的长度,叫做这两点之间的距离.下列计算正确的是()A. -1+2 = 1B. -1-1 = 0C. (-1)2=-1 D. -1

4、2=1 TOC o 1-5 h z .如图,4张如图1的长为a,宽为b (ab)长方形纸片,按图2的方式放置,阴影部 分的面积为Sl,空白部分的面积为S2,若S2=2S,则a, b满足()图2A. a= bB, a=2bC. a= bD, a=3b HYPERLINK l bookmark198 o Current Document 2211.某同学晚上6点多钟开始做作业,他家塔上时钟的时针和分针的夹角是120。,他做完作业后还是6点多钟,且时针和分针的夹角还是120。,此同学做作业大约用了()A. 40分钟B. 42分钟C. 44分钟D. 46分钟12.阅读:关于x方程ax二b在不同的条件下

5、解的情况如下:(1)当aWO时,有唯一解X二,:(2)当a=o, b=0时有无数解:(3)当0, bWO时无解.请你根据以上知识作答:已知关于x的方程。二1-7 (X-6)无解,则a的值是()3261- 11aKl二、填空题.单项式2/歹与-5片x是同类项,则m-n的值是.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为,第。个正方形的中间数字为,(用含。的代数式表示)第1个第2个第3个第4个.把53 30用度表示为.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放 在一个底而为长方形(一边长为4)的盒子底部(如图2、图3),盒子底

6、而未被卡片覆盖 的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5: 6,则盒子底部长方形的面积为.若NA = 3750,则NA的补角的度数为.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二 次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为 2 0% .三种方案提价最多的是方案.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋 数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:你抱怨干吗?如果你给 我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样

7、多!-那么 驴子原来所驮货物有 袋.若a与B互为补角,且a=50 ,则B的度数是.如图,在平面直角坐标系中,动点P按图中箭头所示方向从原点出发,第1次运动到 Pi(Ll),第2次接着运动到点Pz(2, 0),第3次接着运动到点PJ3, -2),,按这的运动规律, 点2019的坐标是. 一个长方体水箱从里而量得长、宽、高分别是50cm、40cm和30cm,此时箱中水 而高8cm,放进一个棱长为20cm的正方体实心铁块后,此时水箱中的水而仍然低于铁块 的顶而,则水箱中露在水面外的铁块体积是 cm3.线段 AB=2cm,延长 AB 至点 C,使 BC=2AB,则 AC=cm.三、压轴题.如图1, O

8、为直线48上一点,过点O作射线OC, N40C= 30 ,将一直角三角板 (其中NP=30 )的直角顶点放在点。处,一边OQ在射线OA上,另一边OP与OC都 在直线AB的上方.将图1中的三角板绕点O以每秒3的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分N80c.求t的值:此时OQ是否平分NAOC?请说明理由:(2)若在三角板转动的同时,射线OC也绕O点以每秒6的速度沿顺时针方向旋转一 周,如图3,那么经过多长时间OC平分NPOQ?请说明理由:(3)在(2)问的基础上,经过多少秒OC平分NPO8?(直接写出结果).26.已知 NAOQ =。,OB、OC、OM、ON 是 NAQ

9、D 内的射线.(1)如图i,当a = 160。,若OM平分ZAOB, ON而分NBOD,求NMQV的大小; 如图 2,若 OM 平分 NAOC, ON 平分 4B0D , ZBOC = 20 , NA/QV = 60,求.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填 数之和都相等.6abX-1-2 (1)可求得x=,第2021个格子中的数为:(2)若前k个格子中所填数之和为2019,求k的值:(3)如果m,。为前三个格子中的任意两个数,那么所有的|mf|的和可以通过计算16-a| +16-bI+1a-b/+1 a-6 +1b-61 +1b-a/得到.若m,n为前8

10、个格子中的任意两个数, 求所有的|m-n|的和.如图1,线段A8的长为a.(1)尺规作图:延长线段48到C,使8C=Z48:延长线段84到D,使AD=4C.(先用 尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段48所在的直线画数轴,以点4为原点,若点8对应的数 恰好为10,请在数轴上标出点C,。两点,并直接写出C, D两点表示的有理数,若点M 是8c的中点,点A/是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点。处开 始,在点C,。之间进行往返运动:乙从点N开始,在N, M之间进行往返运动,甲、乙 同时开始运动,当乙从

11、M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为 每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点 对应的有理数.II.i图1 8图2.如图,己知数轴上点A表示的数为6, B是数轴上在A左侧的一点,且A, B两点间的 距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t 0)秒,数轴上点B表示的数是,点P表示的数是 (用含t的代数式表 示):(2)若点P、Q同时出发,求:当点P运动多少秒时,点P与点Q相遇?当点 P运动多少秒时,点P与点Q间的距离

12、为8个单位长度?.对于数轴上的点P, Q,给出如下定义:若点P到点Q的距离为d(d20),则称d为点P 到点Q的d追随值,记作dPQ.例如,在数轴上点P表示的数是2,点Q表示的数是5, 则点P到点Q的d追随值为dPQ=3.问题解决:点M, N都在数轴上,点M表示的数是1,且点N到点M的d追随值dMN=a(a20), 则点N表示的数是(用含a的代数式表示):如图,点C表示的数是1,在数轴上有两个动点A, B都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数 是b,设运动时间为t(t0).当b=4时,问t为何值时,点A到点B的d追随值dAB

13、=2:若0仁3时,点A到点B的d追随值dABR6,求b的取值范围.CI 1I.13IIIIA-3-2-1012345678.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具 体案例,请完善整个探究过程。已知:点C在直线48上,AC = a , BC = b,且“大,点是A8的中点,请按照 下面步骤探究线段MC的长度。(1)特值尝试若。=10 , =6 ,且点C在线段A3上,求线段MC的长度.(2)周密思考:若。=10 , = 6,则线段MC的长度只能是(1)中的结果吗?请说明理由.(3)问题解决类比(1)、(2)的解答思路,试探究线段的长度(用含。、的代数式表示).如

14、图,AB = 12cm,点C是线段AB上的一点,8C = 24C.动点尸从点4出发,以 女m/s的速度向右运动,到达点4后立即返回,以3cm/s的速度向左运动:动点。从 点。出发,以lcm/s的速度向右运动.设它们同时出发,运动时间为公.当点p与点。 第二次重合时,尸、。两点停止运动.(1)求 4c , BC ;(2)当/为何值时,AP = PQ ;(3)当/为何值时,。与0第一次相遇;(4)当/为何值时,PQ = 1cm.【参考答案】*11试卷处理标记,请不要删除一、选择题1. C解析:C【解析】【分析】根据同类项的定义,单项式和多项式的定义解答.【详解】A . 3d2儿与儿出所含有的字母以

15、及相同字母的指数相同,是同类项,故本选项错误.B .3坐的系数是:,故本选项错误.C.单项式-x3yz的次数是5 ,故本选项正确.D . 3x2 -户5*必是六次三项式,故本选项错误.故选C .【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础 题. C解析:C【解析】试题解析:A 的绝对值是0 ,故本选项错误.B,.,互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D:0的绝对值是0 ,故本选项错误.故选C . B解析:B【解析】【分析】科学记数法的表示形式为“x 10”的形式,其中1时10,为整数.确定的值时

16、,要 看把原数变成。时,小数点移动了多少位,”的绝对值与小数点移动的位数相同.当原数 绝对值1时,是正数:当原数的绝对值V1时,是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为6.048x1()5,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为xl(r的形式,其中 1阿10,为整数,表示时关键要正确确定。的值以及的值.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在 3.14159, 旧,71, 后,-y , 0.1313313331.(每 2 个 1之间依次多一个 3) 中,无理数

17、有芋彳、n、0.1313313331(每2个1之间依次多一个3)这3个, 故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:n, 2n等;开方开不 尽的数;以及像0.1010010001,等有这样规律的数.C解析:C【解析】【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可.【详解】A .连接两点的线段的长度叫做两点间的距离,错误:B.在同一平面内,过一点有且只有一条直线与已知直线垂直,错误:C.对顶角相等,正确:D .线段48的延长线与射线仍不是同一条射线,错误.故选C.【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题

18、的 关键.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做X天,由题意得方程:4 x + 4+=1.1015故选B.【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的 关键.B解析:B【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个 交点,第三个图4条直线相交,最多有6个,由此得到3=1+2 , 6=1+2+3,那么第四个图5 条直线相交,最多有1+2+3+4=10个,以此类推即可求解.详解:第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交

19、点,第三个图4条直线相交,最多有6个,而 3=1+2 , 6=1+2+3 ,第四个图5条直线相交,最多有1+2+3+4=10个,A20条直线相交,最多交点的个数是1+2+3+.+19= ( 1+19 ) xl92=190 .故选B .点暗:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐 含的规律,然后根据规律计算即可解决问题.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公 理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线,这种做法运用到的 数学知识是“两点确定一条直线” .故答

20、窠为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握. A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A:B,同号相加,取相同的符号,并把绝对值相加,一1一1=一2:C,底数为- 1, 一个负数的偶次方应为正数(- 1)2 = 1:D,底数为1, 1的平方的相反数应为一 1;即一仔=一1,故选a.B解析:B【解析】【分析】从图形可知空白部分的面积为Sz是中间边长为(a-b)的正方形面积与上下两个直角边为 (a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形而积与空白部分面积

21、之差,再由S2 = 2S便可得解.【详解】由图形可知,S2= (a-b) 2+b (a+b) +ab=a2+2b2,Si= (a+b) 2-S2=2ab-b2tVS2=2Slt:.a22b2=2 Cab-b?),A a2 - 4ab+4b2=0,即 Ca - 2b) 2=0,故选8.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积 和正确进行因式分解.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,.6x - 0.5x=180 - 120 ,解得xll ;再设做,完作业后的时间是6点y分,.6y - 0.5y=180+120 ,解得尸55 ,此

22、同学做作业大约用了 55 - 11=44分钟.故选C . A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x - (x-6), 去括号得:2ax=2x+6,移项,合3并得,x二,因为无解,所以a-l=O,即a=1.。一1故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题. -2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:,单项式2xmy3与5ynx是同类项, m=19 n3,Am - n= 1 - 3= - 2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫

23、做同类项.【详解】解:.单项式2/y3与-5/x是同类项,m = 1,。=3,.m - n=l - 3= - 2.故答案为:- 2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律 即可得出m的值;首先求得第n个的最小数为1+4 (n-1) =4n-3,其它三个分 别为 4n-2, 4n-l, 4n,解析:8/?-3【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值:首先求得第n个的最小数为1+4 (n-1) =4n-3,其它三个分别为4

24、n-2, 4n-l, 4n,由 以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,.第4个正方形中间的数字m=14+15=29;,第n个的最小数为1+4 (n-1) =4n-3,其它三个分别为4n-2, 4n-l, 4n,第n个正方形的中间数字:4n-2+4n-l=8n-3.故答案为:29: 8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解 题的关键.Y L L O10. 0.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330用度表示为53. 5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应

25、乘以60,由分化度应除以解析:5。.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53 30*用度表示为53.5。,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.16.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方 程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的 周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即 可求出m的值

26、,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图 3阴影部分周长之比为5: 6,即可得出关于x的一元一次方程,解之即可得出x的值,再 利用长方形的而积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m = l,2m = 2.再设盒子底部长方形的另一边长为x,依题意,得:2 (4+x- 2) : 2X2 (2+x- 2) =5: 6,整理,得:10 x=12+6x,解得:x=3,.盒子底部长方形的面积= 4X3 = 12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是

27、解题的关键.17. 4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n, m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2, m=3,解得:n=l, m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出m的值, 再代入代数式计算即可.【详解】解:根据题意得:2n = 2, m=3,解得:n=l, m = 3,则 m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关犍,所 含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相

28、同列 方程(或方程组)求解即可.【解析】【分析】由题意根据互为补角的两个角的和等于180。列式进行计算即可得解.【详解】解:,的补角=180-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210,【解析】【分析】由题意根据互为补角的两个角的和等于180,列式进行计算即可得解.【详解】解:/4 = 37。50,; NA 的补角=180。-37o50 = 14210,.故填 142。10.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.三【解析】【分析】由题意设原价为X,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为X,两次提价

29、后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为X,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为X,两次提价后方案一:(1 +10%)d + 30%)x = 1.43x ;方案二:(1 + 30%)(1 + 10%)x = 1.43x;方案三:(1 + 20%)(1 + 20%)x = L44x.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可. 5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题 的等量关系,即驴子

30、减去一袋时的两倍减1 (即骡子原来驮的袋数)再减1 (我 给你一袋,我们才恰好驮的一样多)二驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1 (即骡子原来驮的袋数)再减1 (我给你一袋,我们才恰 好驮的一样多)=驴子原来所托货物的袋数加上1 ,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2 (x- 1 ) - 1 - l = x+l解得:x = 5 .故驴子原来所托货物的袋数是5 .故答案为5 .【点睛】解题的关键是要读懂题目的意思、,根据题目给出的条件,找出合适的等量关系列出方程,

31、 再求解.21 . 130 .【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角), 解析:130 .【解析】【分析】若两个角的和等于180。,则这两个角互补,依此计算即可.【详解】解:a与夕互为补角,a +夕= 180,./? = 180-a = 180o-50o = 130 .故答案为:130.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180。(平角),就说这两个角互为补 角.即其中一个角是另一个角的补角.(2019, -2)【解析】【分析】观察不难发现,点的横坐标等于

32、运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是儿则与第儿次的纵坐标相同,然后求解即可.【详解】第1次运动解析:(2019, -2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除 以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】第1次运动到点(1,1),第2次运动到点(2, 0),第3次接着运动到点(3, -2),第4次运动到点(4, 0),第5次运动到点(5, 1),运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019.纵坐标以1、0、-2、0每4次为一个循环组循环,V20194-4=504

33、-3,.第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,.,点 P(2019, -2),故答案为:(2019, -2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题 的关键.4000【解析】【分析】设铁块沉入水底后水面高hem,根据铁块放入水中前后水的体积不变列出方程 并解答.【详解】设放入正方体铁块后水面高为hem, 由题意得:50X40X8+20X 20Xh二 解析:4000【解析】【分析】设铁块沉入水底后水而高hem,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水

34、而高为hem,由题意得:50 x40 x8+20 x20 xh=50 x40 xh,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10 (cni),所以水箱中露在水面外的铁块体积是:20 x20 x10=4000 (cm3).故答窠为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.6【解析】如图,VAB=2cm, BO2AB,:.BC=4cm,AC-AB+BC-6cm.故答案为:6.解析:6【解析】如图,VAB=2cm, BC=2AB,.,.BC=4cm,AC=AB+BC=6cni.故答案为:6.ABC三、压轴题(1)5:OQ平分N

35、AX,理由详见解析:(2) 5秒或65秒时OC平分NPOQ;70 rl(3) t=秒.3【解析】【分析】(1)由4OC=30。得到N80c=150。,借助角平分线定义求出NPOC度数,根据角 的和差关系求出NCOQ度数,再算出旋转角NAOQ度数,最后除以旋转速度3即可求出t 值:根据N40Q和NCOQ度数比较判断即可:(2)根据旋转的速度和起始位置,可知NAOQ=3t, NAOC=30 +6t,根据角平分线定义 可知NCOQ=45 ,利用N40Q、ZAOC. NCOQ角之间的关系构造方程求出时间t:(3)先证明NAOQ与NPO8互余,从而用t表示出NPO8=90 - 3t,根据角平分线定义 再

36、用t表示N8OC度数:同时旋转后N4OC=30 +6t,则根据互补关系表示出N80c度 数,同理再把N8OC度数用新的式子表达出来.先后两个关于N8OC的式子相等,构造方 程求解.【详解】V ZAOC=304OC=180o -30, - 63,180 - 30 - 61= (90- 3t), 2,70解得t=.3【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.(1) 80 ; (2) 140【解析】【分析】(1)根据角平分线的定义得NBOM二L/AOB, ZBON=-ZBOD,再根据角的和差得 TOC o 1-5 h z HYPERLINK l book

37、mark202 o Current Document 22NAOD=NAOB+NBOD, ZMON=ZBOM+ZBON,结合三式求解:(2)根据角平分线的定义NMOCNAOC, ZBON=-ZBOD,再根据角的和差得NAOD=NAOC+NBOD./BOC, HYPERLINK l bookmark233 o Current Document 22ZMON=ZMOC+ZBON-ZBOC 结合三式求解.【详解】解:(1):。“ 平分NAOB, ON 平分NBOD, HYPERLINK l bookmark200 o Current Document 1AZBOM=- ZAOB, NBON二一 NB

38、OD, HYPERLINK l bookmark245 o Current Document 22 HYPERLINK l bookmark216 o Current Document I1 z、AZMON=ZBOM+ZBON=-ZAOB+- ZBOD=- ZAOB+ZBOD . HYPERLINK l bookmark208 o Current Document 22VZAOD=ZAOB+ZBOD=a =160 ,AZMON=- X1600 =80c ; 2(2) TOM 平分/AOC, ON 平分NBOD,AZMOC=-ZAOC, ZBON=-ZBOD,V ZMON=ZMOC+ZBON-Z

39、BOC.1 1 1,ZMON= - ZAOC+ - ZBOD -ZBOC= y(ZAOC+ZBOD )-ZBOC.1 1/ ZAOD=ZAOB+ZBOD, ZAOC=ZAOB+ZBOC,1 1AZMON=-(ZAOB+ZBOC+ZBOD)-ZBOC=-(ZAOD+ZBOC )-ZBOC,V ZAOD= a ZMON=60 ,NBOC=20 , .,.60 =i(a+20 )-20 ,【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.27. (1) 6, -1: (2) 2019 或 2014: (3) 234【解析】【分析】(1)根据三个相邻格子的整数的和相等列

40、式求出。、x的值,再根据第9个数是-2可得 b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的 情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)任意三个相邻格子中所填整数之和都相等,6+a+b=a+b+x,解得x=6, a+b+x=b+x- 1,所以数据从左到右依次为6、-1、b、6、-1. b,第9个数与第三个数相同,即 b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.2021 + 3=6732, .第2021个格子中的整数与第2个格子

41、中的数相同,为-1.故答案为:6, -1.(2) V6+ (-1) + (-2) =3,,2019:3=673.;前k个格子中所填数之和可能为2019, 2019=673X3或2019=671X3+6, .k的值为: 673X3=2019 或 671X3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了 3次,-2 出现了 2次.故代入式子可得:(|6+2|X2+|6+1|X3) X3+ (|-1-6| X3+|-l+2| X2) X3+ (|-2-6|X3+|- 2+1| X3) X2=234.【点睛】本题考查了列一元一次

42、方程解实际问题的运用,规律推导的运用,此类题的关键是找出是 按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.(1)详见解析:(2) 35; (3) -5、15、11- 7-.37【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出:(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程 来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示:(2)根据(2)所作图的条件,如果以点八为原点,若点8对应的数恰好为10,则有点C对应的数为30,点D对应的数为-30, MN=20- ( - 15) |=3

43、5(3)设乙从M点第一次回到点N时所用时间为t,则=35 (秒)2MN 2x35 t=35 (秒)22那么甲在总的时间t内所运动的长度为 s=5t=5x35 = 175可见,在乙运动的时间内,甲在C,。之间运动的情况为05+60 = 2.55,也就是说甲在C, D之间运动一个来回还多出55长度单位.设甲乙第一次相遇时的时间为打,有5ti = 2ti+15, h=5 (秒)而-30+5x5= - 5, - 15+2x5= - 5这时甲和乙所对应的有理数为-5.设甲乙第二次相遇时的时间经过的时间肉有5t2+2t2=25+30+5+10, t2 = 10 (秒)此时甲的位置:- 15x5+60+30

44、 = 15,乙的位置15x2 - 15 = 15这时甲和乙所对应的有理数为15.设甲乙第三次相遇时的时间经过的时间3,有205t3-2t3 = 20, t3=(秒)3202202此时甲的位置:30- (5x - 15) =11-,乙的位置:20- (2x -5) =11-33332这时甲和乙所对应的有理数为111从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为如有2216 /fl5t4-11- -30-15+2=11,U=9 (秒) TOC o 1-5 h z 3321I zo1A f此时甲的位置:5x9-45-11-= -7-f乙的位置:11- 2x9= - 7- H

45、YPERLINK l bookmark239 o Current Document 21373217这时甲和乙所对应的有理数为-7y.四次相遇所用时间为:5+10+9=31-(秒),剩余运行时间为:35-31-=3- HYPERLINK l bookmark241 o Current Document 321777(秒) HYPERLINK l bookmark255 o Current Document 45x25当时间为35秒时,乙回到/V点停止,甲在剩余的时间运行距离为5x3 ,=二万二= 位置在-7?+吗 =10,无法再和乙相遇,故所有相遇点对应的有理数为-5、15、甲一乙一*4.i.

46、A DNABMC【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的 运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次 方程是解题的关键.(1) -4, 6-5t: (2)当点P运动5秒时,点P与点Q相遇:当点P运动1或 9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可:(2)由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了 10个单 位长度列出等式,根据等式求出t的值即

47、可得出答案;要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)数轴上点A表示的数为6,.OA=6,则 OB = AB - OA=4,点B在原点左边,.数轴上点B所表示的数为-4:点P运动t秒的长度为53;动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,P所表示的数为:6-53故答案为-4, 6 - 5t;(2)点P运动t秒时追上点Q,根据题意得5t=10+33解得t=5,答:当点P运动5秒时,点P与点Q相遇:设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,贝IJ 10+3a - 5a=8,解得a = L当P超过Q,则10+3a+8=5a,解得a = 9:答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形 结合解决问题是解题的关键,注意不要漏解.八1 ,、530 . (l)l + a 或 l-a: (2),或彳:(3)lb7.【解析】【分析】根据d追随值的定义,分点N在点M左侧和点N在点M右侧两种情况,直接写出答案 即可:分点A在点B左侧和点A在点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论