版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1周易历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法我们用近代术语解释为:把阳爻
2、“- ”当作数字“1”,把阴爻“-”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )A18B17C16D152 下列与的终边相同的角的表达式中正确的是()A2k45(kZ)Bk360(kZ)Ck360315(kZ)Dk (kZ)3自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户
3、属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有( )A12种B24种C36种D72种4从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A48B72C90D965记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为( )A2阶区间B3阶区间C4阶区间D5阶区间6若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为( )ABCD7设,则,三数的大小关系是ABCD8中国古代中的“礼、乐、射、御、书、
4、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种.A408B120C156D2409已知命题p:直线ab,且b平面,则a;命题q:直线l平面,任意直线m,则lm.下列命题为真命题的是( )ApqBp(非q)C(非p)qDp(非q)10已知,若,则等于( )A3B4C5D611南宋数学家杨辉在详解九章算法和算法通变本末中,提出了一些
5、新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:)A1624B1024C1198D156012已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为( )AB3CD二、填空题:本题共4小题,每小题5分,共20分。13在中,已知是的中点,且,点满足,则的取值范围是_.14一个四面体的顶点在空间直角坐标系中的坐标分别是,则该四面体的外接球的体积为_15实
6、数,满足约束条件,则的最大值为_.16已知函数的最大值为3,的图象与y轴的交点坐标为,其相邻两条对称轴间的距离为2,则三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,.(1)当时,证明:;(2)设直线是函数在点处的切线,若直线也与相切,求正整数的值.18(12分)在平面直角坐标系中,直线的参数方程为 (为参数)在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值19(12分)在直角坐标系中,直线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极
7、坐标方程为(1)求和的直角坐标方程;(2)已知为曲线上的一个动点,求线段的中点到直线的最大距离20(12分)已知函数.(1)设,求函数的单调区间,并证明函数有唯一零点.(2)若函数在区间上不单调,证明:.21(12分)已知数列中,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.(1)若数列为“数列”,求数列的前项和;(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.22(10分)已知动点到定点的距离比到轴的距离多.(1)求动点的轨迹的方程;(2)设,是轨迹在上异于原点的两个不同点,直线和的倾斜
8、角分别为和,当,变化且时,证明:直线恒过定点,并求出该定点的坐标.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为120+124=1故选:B【点睛】本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.2C【解析】利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2k (kZ),但是角度制与弧度
9、制不能混用,所以只有答案C正确.故答案为C【点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2) 与终边相同的角=+ 其中.3C【解析】先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C【点睛】此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.4D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛当甲参加另外3场比赛时,共有=72种选择方案;当甲学生不参加任何比赛时,共有=24种选择方案综上所述,所有
10、参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题5D【解析】可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间. 故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题6D【解析】求出直线的斜率和方程,代入双曲线
11、的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.【点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.7C【解析】利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【详解】由,所以有.选C.【点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选
12、择合适的中间值比较是关键,注意合理地进行等价转化.8A【解析】利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;【详解】解:根据题意,首先不做任何考虑直接全排列则有(种),当“乐”排在第一节有(种),当“射”和“御”两门课程相邻时有(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),故选:【点睛】本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题9C【
13、解析】首先判断出为假命题、为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项.【详解】根据线面平行的判定,我们易得命题若直线,直线平面,则直线平面或直线在平面内,命题为假命题;根据线面垂直的定义,我们易得命题若直线平面,则若直线与平面内的任意直线都垂直,命题为真命题.故:A命题“”为假命题;B命题“”为假命题;C命题“”为真命题;D命题“”为假命题.故选:C.【点睛】本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.10C【解析】先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛
14、】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.11B【解析】根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.【详解】依题意:1,4,8,14,23,36,54,两两作差得:3,4,6,9,13,18,两两作差得:1,2,3,4,5,设该数列为,令,设的前项和为,又令,设的前项和为.易,进而得,所以,则,所以,所以.故选:B【点睛】本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.12B【解析】设,代入双曲线方程相减可得到直线的斜率与
15、中点坐标之间的关系,从而得到的等式,求出离心率【详解】,设,则,两式相减得,故选:B【点睛】本题考查求双曲线的离心率,解题方法是点差法,即出现双曲线的弦中点坐标时,可设弦两端点坐标代入双曲线方程相减后得出弦所在直线斜率与中点坐标之间的关系二、填空题:本题共4小题,每小题5分,共20分。13【解析】由中点公式的向量形式可得,即有,设,有,再分别讨论三点共线和不共线时的情况,找到的关系,即可根据函数知识求出范围【详解】是的中点,即设,于是(1)当共线时,因为,若点在之间,则,此时,;若点在的延长线上,则,此时,(2)当不共线时,根据余弦定理可得,解得,由,解得综上,故答案为:【点睛】本题主要考查学
16、中点公式的向量形式和数量积的定义的应用,以及余弦定理的应用,涉及到函数思想和分类讨论思想的应用,解题关键是建立函数关系式,属于中档题14【解析】将四面体补充为长宽高分别为的长方体,体对角线即为外接球的直径,从而得解.【详解】采用补体法,由空间点坐标可知,该四面体的四个顶点在一个长方体上,该长方体的长宽高分别为,长方体的外接球即为该四面体的外接球,外接球的直径即为长方体的体对角线,所以球半径为,体积为.【点睛】本题主要考查了四面体外接球的常用求法:补体法,通过补体得到长方体的外接球从而得解,属于基础题.1510【解析】画出可行域,根据目标函数截距可求.【详解】解:作出可行域如下:由得,平移直线,
17、当经过点时,截距最小,最大解得的最大值为10故答案为:10【点睛】考查可行域的画法及目标函数最大值的求法,基础题.16【解析】,由题意,得,解得,则的周期为4,且,所以.考点:三角函数的图像与性质.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析;(2).【解析】(1)令,求导,可知单调递增,且,因而在上存在零点,在此取得最小值,再证最小值大于零即可.(2)根据题意得到在点处的切线的方程,再设直线与相切于点, 有,即,再求得在点处的切线直线的方程为 由可得,即,根据,转化为,令,转化为要使得在上存在零点,则只需,求解.【详解】(1)证明:设,则,单调递增,且,
18、因而在上存在零点,且在上单调递减,在上单调递增,从而的最小值为.所以,即.(2),故,故切线的方程为设直线与相切于点,注意到,从而切线斜率为,因此,而,从而直线的方程也为 由可知,故,由为正整数可知,所以,令,则,当时,为单调递增函数,且,从而在上无零点;当时,要使得在上存在零点,则只需,因为为单调递增函数,所以;因为为单调递增函数,且,因此;因为为整数,且,所以.【点睛】本题主要考查导数在函数中的综合应用,还考查了转化化归的思想和运算求解的能力,属于难题.18(1)(2)【解析】试题分析:(1)由加减消元得直线的普通方程,由得圆的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,
19、由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果试题解析:解:()由得直线l的普通方程为x+y3=0又由得 2=2sin,化为直角坐标方程为x2+(y)2=5;()把直线l的参数方程代入圆C的直角坐标方程,得(3t)2+(t)2=5,即t23t+4=0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=319(1)(2)最大距离为【解析】(1)直接利用极坐标方程和参数方程的公式计算得到答案.(2)曲线的参数方程为,设,计算点到直线的距离
20、公式得到答案.【详解】(1)由,得,则曲线的直角坐标方程为,即直线的直角坐标方程为(2)可知曲线的参数方程为(为参数),设,则到直线的距离为,所以线段的中点到直线的最大距离为【点睛】本题考查了极坐标方程,参数方程,距离的最值问题,意在考查学生的计算能力.20(1)为增区间;为减区间.见解析(2)见解析【解析】(1)先求得的定义域,然后利用导数求得的单调区间,结合零点存在性定理判断出有唯一零点.(2)求得的导函数,结合在区间上不单调,证得,通过证明,证得成立.【详解】(1)函数的定义域为,由,解得为增区间;由解得为减区间.下面证明函数只有一个零点:,所以函数在区间内有零点,函数在区间上没有零点,故函数只有一个零点.(2)证明:函数,则当时,不符合题意;当时,令,则,所以在上单调增函数,而,又区间上不单调,所以存在,使得在上有一个零点,即,所以,且,即两边取自然对数,得即,要证,即证,先证明:,令,则在上单调递增,即,在中令,令,即即,.【点睛】本小题主要考查利用导数研究函数的单调区间和零点,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于难题.21(1)(2)存在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 监理工程师年度总结报告撰写指南
- 餐厅设计介绍
- 环境监测项目管理及技术培训资料
- 幼儿园教师绩效考核标准及操作指导
- 带组氨酸标签的登革病毒2型和4型病毒样颗粒的表达、鉴定与纯化技术研究
- 财务部门风险控制流程说明
- 带减振器斜拉桥索力测试:理论突破与试验验证
- 风险监测系统动态调整-第1篇
- 预应力凝土桥梁施工技术方案及安全措施
- 餐厅安全培训大会
- DB42-T 2462-2025 悬索桥索夹螺杆紧固力超声拉拔法检测技术规程
- 大学生择业观和创业观
- 《经济法学》2025-2025期末试题及答案
- 车载光通信技术发展及无源网络应用前景
- 工程伦理-形考任务四(权重20%)-国开(SX)-参考资料
- 初中书香阅读社团教案
- 酒店年终总结汇报
- 《无人机地面站与任务规划》 课件 第1-5章 概论 -无人机航测任务规划与实施
- 绿色前缀5000亩生态农业示范园区建设规模及运营模式可行性研究报告
- DB42∕T 2078-2023 红火蚁监测与防控技术规程
- 2025-2030中医养生培训行业市场格局及增长趋势与投资价值分析报告
评论
0/150
提交评论