下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022学年山东省聊城市茌平县城关中学高二数学理上学期期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 设是两个非零向量,下列选项正确的是( )A若,则B 若,则C若,则存在实数,使得D若存在实数,使得,则参考答案:C略2. 下列程序若输出的结果为4,则输入的x值可能是( )INPUT “x=”;xy=x2+2*x+1PRINT yENDA. 1 B. 3 C. 1 D 1或3.参考答案:D3. 已知向量a,b,若ab,则= ( )A B4 C D16 参考答案:C4. 若多项式,则=( )A、509 B、51
2、0 C、511 D、1022参考答案:B略5. 若变量x,y满足约束条件,则z=2x+y的最大值和最小值分别为()A4和3B4和2C3和2D2和0参考答案:B【考点】简单线性规划【专题】计算题;不等式的解法及应用【分析】先根据条件画出可行域,设z=2x+y,再利用几何意义求最值,将最小值转化为y轴上的截距最大,只需求出直线,过可行域内的点N(1,0)时的最小值,过点M(2,0)时,2x+y最大,从而得到选项【解答】解:满足约束条件的可行域如下图所示在坐标系中画出可行域平移直线2x+y=0,经过点N(1,0)时,2x+y最小,最小值为:2,则目标函数z=2x+y的最小值为2经过点M(2,0)时,
3、2x+y最大,最大值为:4,则目标函数z=2x+y的最大值为:4故选B【点评】借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想线性规划中的最优解,通常是利用平移直线法确定6. (文)集合表示的平面区域的面积为( )A. B. 2 C. 3 D. 4参考答案:B略7. 直线与圆相交于不同的A,B两点(其中是实数),且(O是坐标原点),则点P与点距离的取值范围为( ) A B C D参考答案:D8. 设a0,将表示成分数指数幂,其结果是 ( )A. B. C. D. 参考答案:D略9. 若函数在处的导数等于,那么等于() A B C D参考答案:C略10. 用反证法证明:若
4、整系数一元二次方程有有理数根,那么a、b、c中至少有一个偶数时,下列假设正确的是( )A. 假设a、b、c都是偶数B. 假设a、b、c都不是偶数C. 假设a、b、c至多有一个偶数D. 假设a、b、c至多有两个偶数参考答案:B【分析】根据反证法的概念,可知假设应是所证命题的否定,即可求解,得到答案。【详解】根据反证法的概念,假设应是所证命题的否定,所以用反证法证明命题:“若整系数一元二次方程有有理根,那么a、b、c中至少有一个是偶数”时,假设应为“假设a、b、c都不是偶数”,故选B。【点睛】本题主要考查了反证法的概念及其应用,其中解答中熟记反证法的概念,准确作出所证命题的否定是解答的关键,着重考
5、查了推理与运算能力,属于基础题。二、 填空题:本大题共7小题,每小题4分,共28分11. 若关于的不等式在上恒成立,则实数的范围为 参考答案:12. 函数的单调增区间是_.参考答案:13. 已知函数的图像与函数的图像有两个公共点,则实数的取值范围是_参考答案:14. 已知函数,则该函数的值域为_。参考答案:1,215. 已知i为虚数单位,复数在复平面内对应的点在直线上,则z的共轭复数_参考答案:【分析】把复数对应的点的坐标代入直线上,由此得到复数,即可求出答案【详解】复数在复平面内对应的点为,代入直线,可得,解得:,故复数,所以复数的共轭复数;故答案为【点睛】本题主要考查复数对应点的坐标以及与
6、共轭复数的关系,属于基础题。16. 设集合M=,若,则实数的取值范围是 参考答案:17. 已知变量满足约束条件,则的最大值是_参考答案:9略三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. (本题12分)已知数列满足:,其中为数列的前项和.(1)试求的通项公式;(2)若数列满足:,试求的前项和.参考答案:(1)(2)(1) 2分-得 4分又时, 6分(2) 8分 9分-得 11分整理得: 12分19. 已知、为的三内角,且其对边分别为、,若()求; ()若,求的面积参考答案:20. (14分)如图,四棱锥中,点在线段上。(2)若求四棱锥的体积参考答案:略21
7、. 已知椭圆+=1和点P(4,2),直线l经过点P且与椭圆交于A,B两点(1)当直线l的斜率为时,求线段AB的长度;(2)当P点恰好为线段AB的中点时,求l的方程参考答案:【考点】直线与圆锥曲线的关系【分析】(1)设出直线方程,代入椭圆方程,解方程可得交点坐标,由两点 的距离公式即可得到弦长;(2)运用点差法,求得直线的斜率,即可得到直线方程【解答】解:(1)直线l的方程为y2=(x4),即为y=x,代入椭圆方程x2+4y2=36,可得x=3,y=即有|AB|=3;(2)由P的坐标,可得+1,可得P在椭圆内,设A(x1,y1),B(x2,y2),则+=1,+=1,由中点坐标公式可得x1+x2=8,y1+y2=4,由可得, +=0,将代入,可得kAB=,则所求直线的方程为y2=(x4),即为x+2y8=022. 已知椭圆C:上顶点为D,右焦点为F,过右顶点A作直线,且与y轴交于点,又在直线和椭圆C上分别取点Q和点E,满足(O为坐标原点),连接EQ.(1)求t的值,并证明直线AP与圆相切;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州大学《图像处理技术》2023-2024学年第一学期期末试卷
- 贵州财经职业学院《古生物及地史学》2023-2024学年第一学期期末试卷
- 2025陕西建筑安全员知识题库
- 2025年江苏省建筑安全员-B证考试题库附答案
- 贵阳信息科技学院《中外城市发展与规划史》2023-2024学年第一学期期末试卷
- 硅湖职业技术学院《英语写作1》2023-2024学年第一学期期末试卷
- 2025甘肃省建筑安全员知识题库附答案
- 广州新华学院《智能感知与移动计算》2023-2024学年第一学期期末试卷
- 期货交易知识入门-理论与实务课件(考试参考)
- 税金分析课件
- 新人教版一年级数学下册全册导学案
- (正式版)JBT 10437-2024 电线电缆用可交联聚乙烯绝缘料
- 母婴护理-课程标准
- 辽宁省大连市药品零售药店企业药房名单目录
- 矛盾纠纷排查化解登记表
- 教科版三年级上册科学期末测试卷(二)【含答案】
- DB37T 5175-2021 建筑与市政工程绿色施工技术标准
- 泌尿道感染临床路径
- 古诗词常见的修辞手法讲课教案
- 科研项目评审评分表
- A5技术支持的课堂导入作业1—问题描述.针对日常教学中的某一主题针对教学目标、教学内容以及教学对象用简短的语言描述当前课堂导入环节中存在的问题和不足以及借助信息技术改进课堂导入的必要性
评论
0/150
提交评论