版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设 ,则()A10B11C12D132单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”白蚂蚁爬地的路线是AA1A1D1,黑蚂蚁爬行的路线是ABBB1,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线
2、必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )A1BCD03已知函数,其中,其图象关于直线对称,对满足的,有,将函数的图象向左平移个单位长度得到函数的图象,则函数的单调递减区间是()ABCD4设集合A=4,5,7,9,B=3,4,7,8,9,全集U=AB,则集合中的元素共有 ( )A3个B4个C5个D6个5的展开式中的系数是( )A160B240C280D3206在三棱锥中,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为( )ABCD7已知,则下列不等式正确的是( )ABCD
3、8据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是( )ACPI一篮子商品中所占权重最大的是居住BCPI一篮子商品中吃穿住所占权重超过50%C猪肉在CPI一篮子商品中所占权重约为2.5%D猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%9已知直三棱柱中,则异面直线与所成的角的正弦值为( )ABCD10某几何体的三视图如图所示,则该几何体的体积是( )ABCD11设函数定义域为全体实数,令有以下
4、6个论断:是奇函数时,是奇函数;是偶函数时,是奇函数;是偶函数时,是偶函数;是奇函数时,是偶函数是偶函数;对任意的实数,那么正确论断的编号是( )ABCD12函数的大致图象是ABCD二、填空题:本题共4小题,每小题5分,共20分。13的展开式中常数项是_.14已知,则_.15已知数列与均为等差数列(),且,则_16已知复数对应的点位于第二象限,则实数的范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线,的
5、交点分别为、(、异于原点),当斜率时,求的最小值.18(12分)设实数满足.(1)若,求的取值范围;(2)若,求证:.19(12分)已知抛物线的焦点为,点在抛物线上,直线过点,且与抛物线交于,两点(1)求抛物线的方程及点的坐标;(2)求的最大值20(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)调查组从该样本的
6、城镇居民中按分层抽样抽取出7人,参加一次阅读交流活动,若活动主办方从这7位居民中随机选取2人作交流发言,求被选中的2位居民都是经常阅读居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求直线和圆的普通方程;(2)已知直线上一点,若直线与圆交于不同两点,求的取值范围.22(10分)棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种
7、的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取21根棉花纤维进行统计,结果如下表:(记纤维长度不低于311的为“长纤维”,其余为“短纤维”)纤维长度甲地(根数)34454乙地(根数)112116(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过1.125的前提下认为“纤维长度与土壤环境有关系”.甲地乙地总计长纤维短纤维总计附:(1);(2)临界值表;1111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)现从上述41根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样
8、的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据题中给出的分段函数,只要将问题转化为求x10内的函数值,代入即可求出其值【详解】f(x),f(5)ff(1)f(9)ff(15)f(13)1故选:B【点睛】本题主要考查了分段函数中求函数的值,属于基础题2B【解析】根据规则,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬1步回到起点,周期为1计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即
9、可计算出它们的距离【详解】由题意,白蚂蚁爬行路线为AA1A1D1D1C1C1CCBBA,即过1段后又回到起点,可以看作以1为周期,由,白蚂蚁爬完2020段后到回到C点;同理,黑蚂蚁爬行路线为ABBB1B1C1C1D1D1DDA,黑蚂蚁爬完2020段后回到D1点,所以它们此时的距离为.故选B.【点睛】本题考查多面体和旋转体表面上的最短距离问题,考查空间想象与推理能力,属于中等题.3B【解析】根据已知得到函数两个对称轴的距离也即是半周期,由此求得的值,结合其对称轴,求得的值,进而求得解析式.根据图像变换的知识求得的解析式,再利用三角函数求单调区间的方法,求得的单调递减区间.【详解】解:已知函数,其
10、中,其图像关于直线对称,对满足的,有,.再根据其图像关于直线对称,可得,.,.将函数的图像向左平移个单位长度得到函数的图像.令,求得,则函数的单调递减区间是,故选B.【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.4A【解析】试题分析:,所以,即集合中共有3个元素,故选A考点:集合的运算5C【解析】首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【点睛】本题考查二项展开式指定项的系数,掌握二项
11、展开式的通项是解题的关键,属于基础题.6A【解析】设的中点为O先求出外接圆的半径,设,利用平面ABC,得 ,在 及中利用勾股定理构造方程求得球的半径即可【详解】设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.因为,所以,解得.因为,所以.设,易知平面ABC,则.因为,所以,即,解得.所以球Q的半径.故选:A【点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题7D【解析】利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项【详解】已知,赋值法讨论的情况:(1)当时,令,则,排除B、C选项;(2)当时,令,则,排除A选项.故选:D.【点睛】比较大
12、小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题8D【解析】A.从第一个图观察居住占23%,与其他比较即可. B. CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,再判断.C.食品占19.9%,再看第二个图,分清2.5%是在CPI一篮子商品中,还是在食品中即可.D. 易知猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%.【详解】A. CPI一篮子商品中居住占23%,所占权重最大的,故正确.B. CPI一篮子商品中吃穿住所占23%+8%+19.
13、9%=50.9%,权重超过50%,故正确.C.食品占中19.9%,分解后后可知猪肉是占在CPI一篮子商品中所占权重约为2.5%,故正确.D. 猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%,故错误.故选:D【点睛】本题主要考查统计图的识别与应用,还考查了理解辨析的能力,属于基础题.9C【解析】设M,N,P分别为和的中点,得出的夹角为MN和NP夹角或其补角,根据中位线定理,结合余弦定理求出和的余弦值再求其正弦值即可.【详解】根据题意画出图形:设M,N,P分别为和的中点,则的夹角为MN和NP夹角或其补角可知,.作BC中点Q,则为直角三角形;中,由余弦定理得,在中,在中,
14、由余弦定理得所以故选:C【点睛】此题考查异面直线夹角,关键点通过平移将异面直线夹角转化为同一平面内的夹角,属于较易题目.10A【解析】观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【详解】设半圆柱体体积为,半球体体积为,由题得几何体体积为,故选A。【点睛】本题通过三视图考察空间识图的能力,属于基础题。11A【解析】根据函数奇偶性的定义即可判断函数的奇偶性并证明.【详解】当是偶函数,则,所以,所以是偶函数;当是奇函数时,则,所以,所以是偶函数;当为非奇非偶函数时,例如:,则,此时,故错误;故正确.故选:A【点睛】本题考查了函
15、数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.12A【解析】利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,可排除D选项;当时,当时,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13-160【解析】试题分析:常数项为.考点:二项展开式系数问题.14【解析】由已知利用同角三角函数的基本关系式可求得,的值,由两角差的正弦公式即可计算得的值.【详解】,.故答案为:【点睛】本题主要考查了同角三角函数的基本关系、两角差的正弦公式,需熟记公式,属于基础题.1
16、520【解析】设等差数列的公差为,由数列为等差数列,且,根据等差中项的性质可得,解方程求出公差,代入等差数列的通项公式即可求解.【详解】设等差数列的公差为,由数列为等差数列知,因为,所以,解得,所以数列的通项公式为,所以.故答案为:【点睛】本题考查等差数列的概念及其通项公式和等差中项;考查运算求解能力;等差中项的运用是求解本题的关键;属于基础题.16【解析】由复数对应的点,在第二象限,得,且,从而求出实数的范围【详解】解:复数对应的点位于第二象限,且,故答案为:【点睛】本题主要考查复数与复平面内对应点之间的关系,解不等式,且 是解题的关键,属于基础题三、解答题:共70分。解答应写出文字说明、证
17、明过程或演算步骤。17(1)的极坐标方程为;曲线的直角坐标方程.(2)【解析】(1)消去参数,可得曲线的直角坐标方程,再利用极坐标与直角坐标的互化,即可求解. (2)解法1:设直线的倾斜角为,把直线的参数方程代入曲线的普通坐标方程,求得,再把直线的参数方程代入曲线的普通坐标方程,得,得出,利用基本不等式,即可求解;解法2:设直线的极坐标方程为,分别代入曲线,的极坐标方程,得, ,得出,即可基本不等式,即可求解.【详解】(1) 由题曲线的参数方程为(为参数),消去参数,可得曲线的直角坐标方程为,即,则曲线的极坐标方程为,即,又因为曲线的极坐标方程为,即,根据,代入即可求解曲线的直角坐标方程.(2
18、)解法1:设直线的倾斜角为,则直线的参数方程为(为参数,),把直线的参数方程代入曲线的普通坐标方程得:,解得,把直线的参数方程代入曲线的普通坐标方程得:,解得,即,当且仅当,即时取等号,故的最小值为.解法2:设直线的极坐标方程为),代入曲线的极坐标方程,得,把直线的参数方程代入曲线的极坐标方程得:,即,曲线的参,即,当且仅当,即时取等号,故的最小值为.【点睛】本题主要考查了参数方程与普通方程,以及极坐标方程与直角坐标方程点互化,以及直线参数方程的应用和极坐标方程的应用,其中解答中熟记互化公式,合理应用直线的参数方程中参数的几何意义是解答的关键,着重考查了推理与运算能力,属于基础题.18(1)(
19、2)证明见解析【解析】(1)依题意可得,考虑到,则有再分类讨论可得;(2)要证明,即证,即证.利用基本不等式即可得证;【详解】解:(1)由及,得,考虑到,则有,它可化为或即或前者无解,后者的解集为,综上,的取值范围是.(2)要证明,即证,由,得,即证.因为(当且仅当,时取等号).所以成立,故成立.【点睛】本题考查分类讨论法解绝对值不等式,基本不等式的应用,属于中档题.19(1),;(2)1【解析】(1)根据抛物线上的点到焦点和准线的距离相等,可得p值,即可求抛物线C的方程从而可得解;(2)设直线l的方程为:x+my10,代入y24x,得,y2+4my40,设A(x1,y1),B(x2,y2),
20、则y1+y24m,y1y24,x1+x22+4m2,x1x21,(),(x22,),由此能求出的最大值【详解】(1)点F是抛物线y22px(p0)的焦点,P(2,y0)是抛物线上一点,|PF|3,23,解得:p2,抛物线C的方程为y24x,点P(2,n)(n0)在抛物线C上,n2428,由n0,得n2,P(2,2)(2)F(1,0),设直线l的方程为:x+my10,代入y24x,整理得,y2+4my40设A(x1,y1),B(x2,y2),则y1,y2是y2+4my40的两个不同实根,y1+y24m,y1y24,x1+x2(1my1)+(1my2)2m(y1+y2)2+4m2,x1x2(1my
21、1)(1my2)1m(y1+y2)+m2y1y21+4m24m21,(),(x22,),(x12)(x22)+()()x1x22(x1+x2)+4148m2+44+8m+88m2+8m+58(m)2+1当m时,取最大值1【点睛】本题考查抛物线方程的求法,考查向量的数量积的最大值的求法,考查抛物线、直线方程、韦达定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题20(1)见解析,有99%的把握认为经常阅读与居民居住地有关.(2)【解析】(1)根据题中数据得到列联表,然后计算出,与临界值表中的数据对照后可得结论;(2)由题意得概率为古典概型,根据古典概型概率公式计算可得所求.【详解】(1)由题意可得:城镇居民农村居民合计经常阅读10030130不经常阅读403070合计14060200则,所以有99%的把握认为经常阅读与居民居住地有关.(2)在城镇居民140人中,经常阅读的有100人,不经常阅读的有40人.采取分层抽样抽取7人,则其中经常阅读的有5人,记为、;不经常阅读的有2人,记为、.从这7人中随机选取2人作交流发言,所有可能的情况为,共21种,被选中的位居民都是经常阅读居民的情况有种,所求概率为.【点睛】本题主要考查古典概型的概率计算,以及独立性检验的应用,利用列举法是解决本题的关键,考查学生的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年文广局深化文化体育建设计划
- 教师新学期工作计划学校工作计划
- 有关于计划生育的工作计划
- 2024年五年级班主任工作计划范文
- 年学生会社联工作计划范文
- 弟子规教学计划
- 公司行政部个人工作总结及计划
- 物业主管工作计划
- 食药监年度电子政务工作计划
- 司法部门主题活动计划
- 初中九年级数学课件-反比例函数k的几何意义
- 2024年PC行业分析报告及未来发展趋势
- 网络安全专员入职培训
- 广东省佛山市顺德区2023-2024学年九年级上学期期末考试语文试题(含答案)
- 成立售电公司可行性方案
- GB 15607-2023涂装作业安全规程粉末静电喷涂工艺安全
- 充电桩合作方案
- 周三多管理学原理与方法二十章企业技术创新
- 幼儿足球培训课件
- 医疗卫生资源配置与公平性分析
- 好好学习:个人知识管理精进指南
评论
0/150
提交评论