版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环
2、所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为( )ABCD2已知正项等比数列的前项和为,且,则公比的值为()AB或CD3给出个数 ,其规律是:第个数是,第个数比第个数大 ,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和现已给出了该问题算法的程序框图如图,请在图中判断框中的处和执行框中的处填上合适的语句,使之能完成该题算法功能( )A;B;C;D;4设集合,则( )ABCD5函数的图像大致为( ).ABCD 6将3个黑
3、球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( )A14种B15种C16种D18种7若直线的倾斜角为,则的值为( )ABCD8已知数列是公比为的正项等比数列,若、满足,则的最小值为( )ABCD9如图,棱长为的正方体中,为线段的中点,分别为线段和 棱 上任意一点,则的最小值为( )ABCD10已知函数,且的图象经过第一、二、四象限,则,的大小关系为( )ABCD11已知,是平面内三个单位向量,若,则的最小值( )ABCD512关于函数,下列说法正确的是( )A函数的定义域为B函数一个递增区间为C函数的图像关于直线对称D将函数图像向左平移个单位
4、可得函数的图像二、填空题:本题共4小题,每小题5分,共20分。13在棱长为6的正方体中,是的中点,点是面,所在平面内的动点,且满足,则三棱锥的体积的最大值是_.14如图是一个几何体的三视图,若它的体积是,则_ ,该几何体的表面积为 _15在中,角所对的边分别为,的平分线交于点D,且,则的最小值为_16在棱长为的正方体中,是正方形的中心,为的中点,过的平面与直线垂直,则平面截正方体所得的截面面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)有甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪元,送餐员每单制成元;乙公司无底薪,单以内(含单)的部分送餐员每
5、单抽成元,超过单的部分送餐员每单抽成元.现从这两家公司各随机选取一名送餐员,分别记录其天的送餐单数,得到如下频数分布表:送餐单数3839404142甲公司天数101015105乙公司天数101510105(1)从记录甲公司的天送餐单数中随机抽取天,求这天的送餐单数都不小于单的概率;(2)假设同一公司的送餐员一天的送餐单数相同,将频率视为概率,回答下列两个问题:求乙公司送餐员日工资的分布列和数学期望;小张打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,小张应选择哪家公司应聘?说明你的理由.18(12分)已知函数,曲线在点处的切线方程为.()求,的值;()若,求证:对于任意,.1
6、9(12分)如图,三棱柱中,底面是等边三角形,侧面是矩形,是的中点,是棱上的点,且.(1)证明:平面;(2)若,求二面角的余弦值.20(12分)如图,在中,点在线段上.(1)若,求的长;(2)若,求的面积.21(12分)某贫困地区几个丘陵的外围有两条相互垂直的直线型公路,以及铁路线上的一条应开凿的直线穿山隧道,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路, 以所在的直线分别为轴,轴, 建立平面直角坐标系, 如图所示, 山区边界曲线为,设公路与曲线相切于点,的横坐标为.(1)当为何值时,公路的长度最短?求出最短长度;(2)当公路的长度最短时,设公路交轴,轴分别为,两
7、点,并测得四边形中,千米,千米,求应开凿的隧道的长度.22(10分)已知的三个内角所对的边分别为,向量,且.(1)求角的大小;(2)若,求的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据比例关系求得会旗中五环所占面积,再计算比值.【详解】设会旗中五环所占面积为,由于,所以,故可得.故选:B.【点睛】本题考查面积型几何概型的问题求解,属基础题.2C【解析】由可得,故可求的值.【详解】因为,所以,故,因为正项等比数列,故,所以,故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,
8、则有,其中为常数且;(3) 为等比数列( )且公比为.3A【解析】要计算这个数的和,这就需要循环50次,这样可以确定判断语句,根据累加最的变化规律可以确定语句.【详解】因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句应为,第个数是,第个数比第个数大 ,第个数比第个数大,第个数比第个数大,这样可以确定语句为,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.4C【解析】解对数不等式求得集合,由此求得两个集合的交集.【详解】由,解得,故.依题意,所以.故选:C【点睛】本小题主要考查对数不等式的解法,考查集合交集的概念和运算,属于基础题.5A【解析】本题采用
9、排除法: 由排除选项D;根据特殊值排除选项C;由,且无限接近于0时, 排除选项B;【详解】对于选项D:由题意可得, 令函数 ,则,;即.故选项D排除;对于选项C:因为,故选项C排除;对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除;故选项:A【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.6D【解析】采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起【详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白
10、”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有27=14种;情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种.综上所述,共有14+4=18种.故选:D【点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题7B【解析】根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值【详解】由于直线的倾斜角为,所以,则故答案选B【点睛】本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线
11、倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键8B【解析】利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题9D【解析】取中点,过作面,可得为等腰直角三角形,由,可得,当时, 最小,由 ,故,即可求解.【详解】取中点,过作面,如图:则,故,而对固定
12、的点,当时, 最小此时由面,可知为等腰直角三角形,故.故选:D【点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.10C【解析】根据题意,得,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【详解】因为,且的图象经过第一、二、四象限,所以,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,则|,即,所以.故选:C.【点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.11A【解析】由于,且为单位向量,所以可令,再设出单位向量的坐标,再将坐标代入中,利用两点间的距离的几何意义可求出结果【详解】解:设,则,从而,等号可取到
13、故选:A【点睛】此题考查的是平面向量的坐标、模的运算,利用整体代换,再结合距离公式求解,属于难题12B【解析】化简到,根据定义域排除,计算单调性知正确,得到答案.【详解】,故函数的定义域为,故错误;当时,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据与相似,过作于,利用体积公式求解OP最值,根据勾股定理得出,利用函数单调性判断求解即可.【详解】在棱长为6的正方
14、体中,是的中点,点是面所在平面内的动点,且满足,又,与相似,即,过作于,设,化简得:,根据函数单调性判断,时,取得最大值36,在正方体中平面.三棱锥体积的最大值为【点睛】本题考查三角形相似,几何体体积以及函数单调性的综合应用,难度一般.14;【解析】试题分析:如图:此几何体是四棱锥,底面是边长为的正方形,平面平面,并且,所以体积是,解得,四个侧面都是直角三角形,所以计算出边长,表面积是考点:1三视图;2几何体的表面积159【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利
15、用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.16【解析】确定平面即为平面,四边形是菱形,计算面积得到答案.【详解】如图,在正方体中,记的中点为,连接,则平面即为平面证明如下:由正方体的性质可知,则,四点共面,记的中点为,连接,易证连接,则,所以平面,则同理可证,则平面,所以平面即平面,且四边形即平面截正方体所得的截面因为正方体的棱长为,易知四边形是菱形,其对角线,所以其面积故答案为:【点睛】本题考查了正方体的截面面积,意在考查学生的空间想象
16、能力和计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)分布列见解析,;小张应选择甲公司应聘.【解析】(1)记抽取的3天送餐单数都不小于40为事件,可得(A)的值(2)设乙公司送餐员送餐单数为,可得当时,以此类推可得:当时,当时,的值当时,的值,同理可得:当时,的所有可能取值可得的分布列及其数学期望依题意,甲公司送餐员日平均送餐单数可得甲公司送餐员日平均工资,与乙数学期望比较即可得出【详解】解:(1)由表知,50天送餐单数中有30天的送餐单数不小于40单,记抽取的3天送餐单数都不小于40为事件,则 (2)设乙公司送餐员的送餐单数为,日工资为元,则当时,;
17、当时,;当时,;当时,;当时,所以的分布列为228234240247254 依题意,甲公司送餐员的日平均送餐单数为,所以甲公司送餐员的日平均工资为元, 因为,所以小张应选择甲公司应聘【点睛】本题考查了随机变量的分布列与数学期望、古典概率计算公式、组合计算公式,考查了推理能力与计算能力,属于中档题18(),()见解析【解析】(1)根据导数的运算法则,求出函数的导数,利用切线方程求出切线的斜率及切点,利用函数在切点处的导数值为曲线切线的斜率及切点也在曲线上,列出方程组,求出,值;(2)首先将不等式转化为函数,即将不等式右边式子左移,得,构造函数并判断其符号,这里应注意的取值范围,从而证明不等式.【
18、详解】解:(1)由于直线的斜率为,且过点,故即解得,.(2)由(1)知,所以.考虑函数,则.而,故当时,所以,即.【点睛】本题考查了利用导数求切线的斜率,利用函数的导数研究函数的单调性、和最值问题,以及不等式证明问题,考查了分析及解决问题的能力,其中,不等式问题中结合构造函数实现正确转换为最大值和最小值问题是关键.19(1)见解析(2)【解析】(1)连结BM,推导出BCBB1,AA1BC,从而AA1MC,进而AA1平面BCM,AA1MB,推导出四边形AMNP是平行四边形,从而MNAP,由此能证明MN平面ABC(2)推导出ABA1是等腰直角三角形,设AB,则AA12a,BMAMa,推导出MCBM
19、,MCAA1,BMAA1,以M为坐标原点,MA1,MB,MC为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角ACMN的余弦值【详解】(1)如图1,在三棱柱中,连结,因为是矩形,所以,因为,所以, 又因为,所以平面,所以,又因为,所以是中点,取中点,连结,因为是的中点,则且, 所以且,所以四边形是平行四边形,所以,又因为平面,平面,所以平面.(图1) (图2)(2)因为,所以是等腰直角三角形,设,则,.在中,所以.在中,所以,由(1)知,则,如图2,以为坐标原点,的方向分别为轴,轴,轴的正方向建立空间直角坐标系,则,.所以,则,设平面的法向量为,则即取得.故平面的一个法向量为,因为平面的一个法向量为,则.因为二面角为钝角,所以二面角的余弦值为.【点睛】本题考查线面平行的证明,考查了利用空间向量法求解二面角的方法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题20(1)(2)【解析】(1)先根据平方关系求出,再根据正弦定理即可求出;(2)分别在和中,根据正弦定理列出两个等式,两式相除,利用题目条件即可求出,再根据余弦定理求出,即可根据求出的面积【详解】(1)由,得,所以.由正弦定理得,即,得.(2)由正弦定理,在中,在中,又,由得,由余弦定理得,即,解得,所以的面积.【点睛】本题主要考查正余弦定理在解三角形中的应用,以及三角形面积公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版四年级语文上册习作《写信》精美课件
- 【写作提升】细致状物(技法+素材+范文点评)(教案)四年级语文 部编版
- 福建省海滨学校、港尾中学2024年高三复习统一检测试题数学试题
- 2024年郑州客运从业资格证可以考几次
- 2024年湖南客运企业安全员考试试卷
- 2024年十堰道路客运从业资格证考试
- 2024年昆明客运从业资格证模拟考试试题题库及答案
- 2023年北京市初三一模道德与法治试题汇编:走向未来的少年章节综合
- 吉首大学《民间美术图形创新设计》2021-2022学年第一学期期末试卷
- 吉首大学《动物源食品加工专题》2021-2022学年第一学期期末试卷
- 传统音乐与现代音乐的融合与共生
- 老人康复治疗知识讲座
- 机械制图直线的投影公开课课件1
- 物流仓储招商策划制定
- 商业秘密保护意识培训
- 专题03 中点弦问题(点差法)(教师版)2024高考数学复习满分突破
- 少儿体智能特色课程设计
- 成人重症患者镇痛管理(专家共识)
- AFP、DCP和GGT联合检测在原发性肝癌诊断中的应用价值演示稿件
- 中职语文课件:1.1《送瘟神》课件14张2023-2024学年中职语文职业模块
- 建筑施工现场车辆管理方案
评论
0/150
提交评论