下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年山东省临沂市春天女子中学高一数学文测试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知数列an满足,若,则a2008的值为()ABCD参考答案:A【考点】8H:数列递推式【分析】由于所求项的序号较大,考虑数列是否有周期性,可通过求出足够多的项发现周期性,并应用【解答】解:,a3=2a21=2=a4=2a3=a5=2a41=2=数列的项轮流重复出现,周期是3所以a2008=a 3669+1=a1=故选A【点评】本题考查利用数列的递推公式求项,当所求项的序号较大时,发现周期性,并应用是此类题目的共同特点
2、2. 下列四个结论: 两条不同的直线都和同一个平面平行,则这两条直线平行。 两条不同的直线没有公共点,则这两条直线平行。 两条不同直线都和第三条直线垂直,则这两条直线平行。 一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。其中正确的个数为() A B C D参考答案:A 略3. 等差数列an满足,则其前10项之和为()A. 9B. 15C. 15D. 参考答案:D由已知(a4a7)29,所以a4a73,从而a1a103.所以S101015.故选D.4. 集合则以下正确的是( ) 参考答案:D略5. 若函数恰有三个不同的零点,则的取值范围是( )A. B. C. D. 参考答
3、案:A【分析】由题意得方程有三个不同的实数根,令,然后画出函数的大致图象,由函数的图象以及余弦图象的对称轴求出的值,判断出的范围,即可求出的取值范围【详解】由题意得方程有三个不同的实数根,令,画出函数的大致图象,如图所示由图象得,当时,方程恰好有三个根令,得,当时,;当时,不妨设,由题意得点关于直线对称,所以又结合图象可得,所以,即的取值范围为故选A【点睛】解答本题的关键是借助函数的图象利用数形结合求解,解题时注意余弦型函数图象对称性的应用,转化为只判断零点所在的范围的问题求解,考查画图、用图以及转化思想的应用,属于基础题6. 下列对应关系:( ):的平方根:的倒数:中的数平方其中是到的映射的
4、是 A、 B、 C、 D、参考答案:C7. 给出命题:y=sinx是增函数;y=arcsinxarctanx是奇函数;y=arccos|x|为增函数;y=arccosx为奇函数其中正确的个数是()A1B2C3D4参考答案:B8. 在正项等比数列an中,已知,则的值为( )A. B. C. D. 1参考答案:D【分析】由,求得,得到,即可求解,得到答案【详解】由题意,正项等比数列中,且,可得,又因为,所以,则,故选D【点睛】本题主要考查了等比数列的通项公式的应用,其中解答中熟记等比数列的通项公式,准确求解公比是解答的关键,着重考查了运算与求解能力,属于基础题9. 设等差数列an的前n项和为Sn,
5、 =(a1,1),=(1,a10),若?=20,且S11=121,bn=+,则数列bn的前40项和为()ABCD参考答案:C【考点】8H:数列递推式;8E:数列的求和【分析】设设等差数列an的公差为d利用?=20,可得a1+a10=20,2a1+9d=20又S11=121,可得11a1+d=121联立解得a1=1,d=2可得an=2n1bn=+=+,利用裂项求和方法即可得出【解答】解:设设等差数列an的公差为d=(a1,1),=(1,a10),?=20,a1+a10=202a1+9d=20又S11=121,11a1+d=121联立解得a1=1,d=2an=1+2(n1)=2n1bn=+=+,则
6、数列bn的前40项和=+=+=故选:C10. 设等差数列的公差为d,若数列为递减数列,则( )A B C D参考答案:C二、 填空题:本大题共7小题,每小题4分,共28分11. 设函数,则的值为_参考答案:【分析】根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.12. 若,且,则四边形的形状是_参考答案:等腰梯形根据题意,那么结合向量共线的概念可知,那么四边形的形状一组对边平行且不相等,另一组对边相等的四边形,则四边形的形状是等腰梯形。故答案为等腰梯形。13.
7、 圆锥的底面半径是1,它的侧面展开图是一个半圆,则它的母线长为_。参考答案:2略14. 若锐角的面积为,且,则等于_参考答案:7【考点】HS:余弦定理的应用【分析】利用三角形的面积公式求出,再利用余弦定理求出【解答】解:因为锐角的面积为,且,所以,所以,所以,所以,所以故答案为:15. 已知函数,则的值为 .参考答案: 16. 已知等比数列an中,设为该数列的前2n项和,为数列的前n项和,若,则实数t的值为 。参考答案:317. 若a=log43,则2a+2a=参考答案:【考点】对数的运算性质【分析】直接把a代入2a+2a,然后利用对数的运算性质得答案【解答】解:a=log43,可知4a=3,
8、即2a=,所以2a+2a=+=故答案为:三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. (本题12分)已知数列的前项和为(),其中是常数。(1)若数列为等比数列,求常数的值;(2)若,求数列的通项公式。参考答案:1);(2)19. (本小题满分13分)设数列的前项和为,对一切,点都在函数的图象上(1)求归纳数列的通项公式(不必证明);(2)将数列依次按1项、2项、3项、4项循环地分为(), ;,;,., 分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为, 求的值; (3)设为数列的前项积,若不等式对一切 都成立,其中,求的取值范围参考
9、答案:(1)因为点在函数的图象上,故,所以令,得,所以;令,得,所以;令,得,所以由此猜想:(2)因为(),所以数列依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),. 每一次循环记为一组由于每一个循环含有4个括号, 故 是第25组中第4个括号内各数之和由分组规律知,由各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20. 同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20. 故各组第4个括号中各数之和构成等差数列,且公差为80. 注意到第一组中第4个括号内各数之和是68,所以 又=22,所以=2010.8分(3)因为,故,所以又,故对一切都成立,就是对一切都成立9分设,则只需即可由于,所以,故是单调递减,于是令,12分即 ,解得,或综上所述,使得所给不等式对一切都成立的实数的取值范围是20. 已知方程.()若此方程表示圆,求的取值范围;()若()中的圆与直线相交于M,N两点,且OMON(O为坐标原点)求的值;()在()的条件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 研究生英语课件
- 2024年度企业合并与收购合同(制造业)3篇
- 简单租赁协议书范本
- 2024版租赁合同:智能新能源汽车租赁与服务3篇
- 2024版钢筋工程监理合同2篇
- 2024年度教育培训合同标的课程安排
- 2024年度吊机维护与修理服务合同2篇
- 人教版九年级化学第四单元自然界的水1爱护水资源教学课件
- 过桥垫资合同模板 完整版2024精
- 企业员工培训与开发方案设计
- DB11-239-2021 车用柴油环保技术要求
- 三好学生竞选17
- 认养树的合同(2篇)
- 第四单元(整体教学课件)七年级语文上册大单元教学名师备课系列(统编版2024)
- 劳动法律学习试题
- 人教版2024-2025学年六年级数学上册专项提升第三单元专练篇·03:分数除法混合运算和简便计算其二(原卷版+解析)
- 2024年上海奉贤投资(集团)限公司招聘3人历年高频难、易错点500题模拟试题附带答案详解
- 2024世界邮政日主题世界邮政日活动方案
- 肺栓塞诊断与治疗指南
- 足疗店禁止涉黄协议书模板
- 过敏性休克完整版本
评论
0/150
提交评论