



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学选修2-3第一章:排列与组合排列与组合的主要公式二、排列.1. 对排列定义的理解.定义:从n个不同的元素中任取m(mn)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.排列数.从n个不同元素中取出m(mn)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列. 从n个不同元素中取出m个元素的一个排列数,用符号表示.排列数公式: 注意: 规定0! = 1 规定2. 含有可重元素的排列问题.对含有相同元素求排列个数的方法是:设重集S有k个不同元素a1,a2,.an其中限
2、重复数为n1、n2nk,且n = n1+n2+nk , 则S的排列个数等于. 例如:已知数字3、2、2,求其排列个数又例如:数字5、5、5、求其排列个数?其排列个数. 三、组合.1. 组合:从n个不同的元素中任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.组合数公式:两个公式: 从n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出 n-m个元素的方法是一一对应的,因此是一样多的就是说从n个不同元素中取出n-m个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n个白球一个红球,任取m个不同小球其不同选法,分二类,一类是含红球选法有一类是不含
3、红球的选法有)根据组合定义与加法原理得;在确定n+1个不同元素中取m个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C,如果不取这一元素,则需从剩余n个元素中取出m个元素,所以共有C种,依分类原理有. 排列与组合的联系与区别.联系:都是从n个不同元素中取出m个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.几个常用组合数公式例1 六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不
4、站左端,乙不站右端.(7)甲、乙、丙三人按从高到矮,自左向右的顺序,(8)甲、乙之间有且只有两人变形1.用0、1、2、3、4、5这六个数字,可以组成多少个分别符合下列条件的无重复数字的四位数:(1)奇数;(2)偶数;(3)大于3 125的数.2从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有 个.3用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是 .(用数字作答)4.甲、乙、丙三名同学在课余时间负责一个计算机房的周一至周六值班工作,每天一人值班,每人值班两天,如果甲
5、同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有 种.5用四个不同数字组成四位数,所有这些四位数中的数字的总和为,则 .6从中任取三个数字,从中任取两个数字,组成没有重复数字的五位数,共有_个?例2 男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.变形1.停车场每排恰有10个停车位.当有7辆不同型号的车已停放在同一排后,恰有3个空车位连在一起的排法有 种.(用式子表示)2.将编号为1,2,3,4,5的五个球放入
6、编号为1,2,3,4,5的五个盒子里,每个盒子内放一个球,若恰好有三个球的编号与盒子编号相同,则不同投放方法共有 种.例3 4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?例4.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?(1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本;(3)分成每组都是2本的三组;(4)分给甲、乙、丙三人,每人2本.变形1.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2
7、个,求该外商不同的投资方案有多少种?2从不同号码的双鞋中任取只,其中恰好有双的取法种数为( )例5.已知平面,在内有4个点,在内有6个点.(1)过这10个点中的3点作一平面,最多可作多少个不同平面?(2)以这些点为顶点,最多可作多少个三棱锥?(3)上述三棱锥中最多可以有多少个不同的体积?练习:1。2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 A. 36种 B. 12种 C. 18种 D. 48种22位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 A. 60 B. 48 C. 42 D. 363甲、乙两人从4门课程中各选修2门。则甲、乙所选的课程中至少有1门不相同的选法共有A. 6种 B. 12种 C. 30种 D. 36种4用数字0,1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国卡线式插座行业发展研究报告
- 2025至2030年中国单排多轴木工钻床市场调查研究报告
- 2025至2030年中国医用产品市场调查研究报告
- 2025至2030年中国化玻仪器市场分析及竞争策略研究报告
- 2025至2030年中国划线仪表墨水行业发展研究报告
- 2025至2030年中国分体组合式低压脉冲袋除尘器行业投资前景及策略咨询报告
- 2025至2030年中国八音琴机芯数据监测研究报告
- 带孩子打卡的10件事
- 艺术教育咨询企业制定与实施新质生产力战略研究报告
- 跨文化媒体研究行业深度调研及发展战略咨询报告
- 2024年福建省2024届高三3月省质检(高中毕业班适应性练习卷)英语试卷(含答案)
- 新申请艾滋病筛查实验室验收指南
- 仓储设备操作安全操作培训
- 上海电机学院计算机C语言专升本题库及答案
- 幼儿园公开课:大班语言《相反国》课件(优化版)
- 2023年宁波房地产市场年度报告
- 员工身心健康情况排查表
- 模拟小法庭剧本-校园欺凌
- 危险化学品经营企业安全评价细则
- 哈利波特与死亡圣器下双语电影台词
- 10以内数字的分解和组成
评论
0/150
提交评论