版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、信息分析与预测时间序列第1页,共64页,2022年,5月20日,0点31分,星期一时间序列分析法第2页,共64页,2022年,5月20日,0点31分,星期一10 概述 所谓时间序列(time series),就是 具有均匀时间间隔的各种社会、自然现象的数量指标依时间次序排列起来的统计数据。时间序列分析法是通过对历史数据变化的分析,来评价事物的现状和估计事物的未来变化。这种方法在科学决策、R&D和市场开拓活动中的许多场合有广泛的应用,如市场行情分析、产品销售预测等。第3页,共64页,2022年,5月20日,0点31分,星期一10 概述 从回归分析法的角度看,时间序列分析法实际上是一种特殊的回归分
2、析法,因为此时不再考虑事物之间的因果关系或其他相关关系,而仅考虑研究对象与时间之间的相关关系,即将时间作为自变量来看待。第4页,共64页,2022年,5月20日,0点31分,星期一10 概述 为了保证时间序列分析的准确性,时间序列数据的编制应该遵循以下一些原则:时间序列中的各项数据所代表的时期长短(或间隔时间)应该一致且连续。时间序列中的各项数据所代表的质的内容应该前后一致。统计指标数据的计量单位应该一致。第5页,共64页,2022年,5月20日,0点31分,星期一10 概述时间序列数据随时间推移而变动包括四种类型:倾向变动/趋势变动(trend variation)即在整个预测内研究对象呈现
3、出渐增或渐减的总倾向。周期变动(cyclical variation)即以某一时间间隔为周期的周期性变动,如危机和复苏的交替。季节变动(seasonal variation)。即以一年为周期的周期变动,如服装行业销售额的季节性波动。不规则变动/随机变动(irregular/random variation)是指除以上三种变动之外的变动。第6页,共64页,2022年,5月20日,0点31分,星期一第7页,共64页,2022年,5月20日,0点31分,星期一10 概述 倾向线的拟合方法,实质上是一种时间序列回归分析法,它是通过数学模型的建立和求解来进行分析的。这种方法的优点是精确度比较高 。 倾向
4、线的逐步修正方法则是与倾向线拟合方法性质完全不同的另一种方法。它是通过时间序列数据的平滑来进行分析的。所谓“平滑”,就是将原始时间序列数据不规则的,有突变的轨迹大致地修匀,形成平滑的倾向线,以把握事物的发展趋势。第8页,共64页,2022年,5月20日,0点31分,星期一10 概述 需要说明的是,人们研究的事物往往受到诸多因素的复杂影响,而在倾向变动预测中,我们都只考虑其中的时间因素,即把事物的特征值仅仅作为时间的函数来表现,求出函数表达式,并在假定这种函数关系在要预测的期间内无结构性突变的情况下,预测其未来值。因此在所研究事物的客观环境(条件)发生突变的情况下,切不可机械地套用时间序列分析方
5、法,而应该对研究对象进行全面的条件和环境分析,才能得出比较 符合事物发展的客观预测结果。第9页,共64页,2022年,5月20日,0点31分,星期一10.1多项式曲线法 当进行时间序列分析时,应先将研究对象的动态数据与所对应的时间序列反映到直角坐标系中,得到一散点图,然后对散点图进行分析。当可用时间t的k次多项式曲线(multinomial curve)较好地拟合散点时,我们就可以用时间t的k次多项式来描述时间序列数据,并据以推测研究对象的未来状况。第10页,共64页,2022年,5月20日,0点31分,星期一10.1.1 一次曲线(直线) 当时间序列数据的散点图可以用直线拟合时,则可用直线回
6、归方程来描述研究对象y与时间t的关系,并可据此预测研究对象的未来情况。回归系数a,b可根据最小二乘法求得第11页,共64页,2022年,5月20日,0点31分,星期一10.1.1 一次曲线 经过转换第12页,共64页,2022年,5月20日,0点31分,星期一10.1.1 一次曲线 当时间点 为连续等间隔时,若把原点取在时间序列的中间,即在数据项数为奇数(N=2n+1)时,取ti的系列为:-n,-(n-1),-2,-1,0,1,2,(n-1),n在数据项数为偶数(N=2n)时,取ti的系列为:-(2n-1),-(2n-3),-3,-1,1,3,(2n-3),(2n-1)第13页,共64页,20
7、22年,5月20日,0点31分,星期一10.1.1 一次曲线则在此两种情况下都有因此有第14页,共64页,2022年,5月20日,0点31分,星期一10.1.1 一次曲线例:江苏省1985年到2002年专利申请量的数据如下:第15页,共64页,2022年,5月20日,0点31分,星期一10.1.1 一次曲线第16页,共64页,2022年,5月20日,0点31分,星期一第17页,共64页,2022年,5月20日,0点31分,星期一10.1.1 一次曲线所以得到直线回归方程为y=7370.5+593.2t第18页,共64页,2022年,5月20日,0点31分,星期一10.1.1 一次曲线 预测20
8、10年专利申请量,对于2010年ti=23,可得预测值为第19页,共64页,2022年,5月20日,0点31分,星期一10.1.1 一次曲线 为了衡量所得的回归方程与实际值的偏离程度,引入不一致系数u。 不一致系数u值越小,说明所得的拟合曲线(回归方程)与实际值倾向线的偏差越小,即拟合得越好。第20页,共64页,2022年,5月20日,0点31分,星期一10.1.1 一次曲线第21页,共64页,2022年,5月20日,0点31分,星期一二次曲线 在时间序列数据yi散点图的倾向线呈二次多项式曲线时,可以用二次多项式去描述它,其一般表达式为:第22页,共64页,2022年,5月20日,0点31分,
9、星期一第23页,共64页,2022年,5月20日,0点31分,星期一三次曲线 在时间序列数据yi散点图的倾向线呈三次多项式曲线时,可以用三次多项式去描述它,其一般表达式为: 第24页,共64页,2022年,5月20日,0点31分,星期一三次曲线第25页,共64页,2022年,5月20日,0点31分,星期一10.3 指数曲线法 研究对象呈现指数增长是时间序列数据分析中比较常见的一种形式,特别是研究对象在初期发展阶段其时间序列数据的倾向线往往呈指数曲线(exponenial curve)上升的趋势。如我国网络用户数量增长曲线就是呈指数曲线形式。第26页,共64页,2022年,5月20日,0点31分
10、,星期一一次指数曲线法 在时间序列数据散点图的倾向线大致是一次指数曲线时可用一次指数曲线去拟合它。第27页,共64页,2022年,5月20日,0点31分,星期一一次指数曲线法 一次指数曲线的一般形式为第28页,共64页,2022年,5月20日,0点31分,星期一一次指数曲线法 两边取对数,有第29页,共64页,2022年,5月20日,0点31分,星期一一次指数曲线法 即将指数曲线化成了直线。下面我们来求回归系数a和b。 直线式的剩余平方和为第30页,共64页,2022年,5月20日,0点31分,星期一一次指数曲线法 根据微积分的极值原理,有第31页,共64页,2022年,5月20日,0点31分
11、,星期一一次指数曲线法 解此联立方程,可以得到第32页,共64页,2022年,5月20日,0点31分,星期一一次指数曲线法第33页,共64页,2022年,5月20日,0点31分,星期一一次指数曲线法 由此即可得到a和b。对于时间t的原点设在时间序列中间的情况,有第34页,共64页,2022年,5月20日,0点31分,星期一一次指数曲线法 例:某市1998-2003年的灯具商品销售量分别为8.7,10.6,13.3,16.5,20.6,26.0万架,用一次指数曲线法预测2004年销售量。第35页,共64页,2022年,5月20日,0点31分,星期一一次指数曲线法第36页,共64页,2022年,5
12、月20日,0点31分,星期一一次指数曲线法 根据表中的数据,求得所以,指数曲线回归方程为 第37页,共64页,2022年,5月20日,0点31分,星期一一次指数曲线法 不一致系数为:第38页,共64页,2022年,5月20日,0点31分,星期一一次指数曲线法当t=7时,可预测2004年的销售量为32.07万架。第39页,共64页,2022年,5月20日,0点31分,星期一移动平均法第40页,共64页,2022年,5月20日,0点31分,星期一概述 倾向线的逐步修正方法是通过时间序列数据平滑来进行分析的。最简单的平滑方法就是取时间序列数据的算术平均值,它能有效地排除随机变动的影响。例如,时间序列
13、数据为 ,对应于时间t=1,2,,N,其算术平均值为第41页,共64页,2022年,5月20日,0点31分,星期一概述t-时间下标变量,表示时期序号N-时间序列的时期个数,也即时间序列数据个数第42页,共64页,2022年,5月20日,0点31分,星期一概述 不过,使用算术平均值作为时间序列数据平滑的数学模型和它的预测值,虽然能够排除随机变动,但它有着严重的缺点;它只能反映时间序列数据的一般情况(平均水平),而不能反映出数据中的高值和低值,更不能反映时间序列数据的演变过程和发展趋势,掩盖了它的可能存在的倾向变动;它对时间序列的近期数据和早期数据同样看待,缺乏对当前数据变动的适应能力。 第43页
14、,共64页,2022年,5月20日,0点31分,星期一概述 对算术平均法的改进,最初得到的是一种分段平均法,分段平均法是按时期序号将时间序列数据分成都含有n个时期的段,再取各段数据平均值。例如,将江苏省专利申请量18年来的数据划分为各包含6年的3段,分别求出各段平均值。第44页,共64页,2022年,5月20日,0点31分,星期一概述 分段平均法能够反映出研究对象的总的变化趋势和各时期大致变化幅度,并且通过取平均值可以减弱随机因素的影响。但是,这样的分段平均使得数据点大为减少,只为原来数据点的1/n,使各段平均值呈阶梯状,不能连续反映变量的变化过程;而且,当时期总数不为n的整数倍时不便分段。第
15、45页,共64页,2022年,5月20日,0点31分,星期一10.4.2 一次移动平均 对分段平均法改进得到移动平均法(moving-average method),又称为滑动平均法,移动平均法是利用平均过程所具有的平滑作用,从时间序列数据中去除局部的不规则性,排除随机影响,从而找出时间序列数据变动趋势的方法。它对时间序列数据分段求出算术平均值,但这时的分段平均并不是截然分开的段进行,而是按根据时期的顺序不断移动得到的段进行,即它的平均值的计算区段部分的重叠和逐渐移动,因而能够在一定程度上客观地描述实际的时间序列数据及其变化趋势。第46页,共64页,2022年,5月20日,0点31分,星期一1
16、0.4.2 一次移动平均 一次移动平均值的计算公式为 -为第t时期及其以前(n-1)各时期的数据的移动平均值t-时期序号yt-第t时期变量的数值n-每段跨越的时期个数,即所包含的数据个数第47页,共64页,2022年,5月20日,0点31分,星期一10.4.2 一次移动平均 也可以用递推公式表示: 如果时间序列数据很长,n的取值又较大,用递推公式可以大大减少计算量。同时,当获得新数据时,无需像回归分析那样重新估算方程,而可以根据先期计算出来的移动平均值,很容易求出新的移动平均值。第48页,共64页,2022年,5月20日,0点31分,星期一1985-2002年江苏省专利申请量移动平均法预测数据
17、表第49页,共64页,2022年,5月20日,0点31分,星期一10.4.2 一次移动平均 合理地选择每段时期个数n是用好移动平均法的关键。在n取较大值时,移动平均值对于随机影响的敏感性弱些,平滑作用强,但适应新数据水平的时间要长些,容易落后于可能的发展趋势;而当n 取较小值时,移动平均值对于随机影响的敏感性较强,平滑作用差,适应数据新水平的时间短,因而容易对随机干扰反映过度灵敏而造成错觉。一般可以根据实际时间序列数据的特征和经验选择参数n。第50页,共64页,2022年,5月20日,0点31分,星期一10.4.2 一次移动平均第51页,共64页,2022年,5月20日,0点31分,星期一10
18、.4.3 二次移动平均 -为第t时期的一次移动平均值-为第t时期的二次移动平均值第52页,共64页,2022年,5月20日,0点31分,星期一第53页,共64页,2022年,5月20日,0点31分,星期一10.4.3 二次移动平均 一次移动平均只适用于平滑时间序列数据,而不适用于有线性变动趋势的时间序列数据预测。这是因为一次移动平均值是 每时间段 的平均值,当 为线性增长趋势时, 必然小于 值;反之,当为线性下降趋势时, 必然大于 值。 第54页,共64页,2022年,5月20日,0点31分,星期一10.4.3 二次移动平均 同理,二次移动平均是在一次移动平均值的基础上进行的,二次移动平均也与
19、一次移动平均数序列存在滞后偏差。 因此 和 只能用于简易预测。为了改善预测效果,我们可以利用 和 求出平滑系数,建立线性移动平均模型进行预测。第55页,共64页,2022年,5月20日,0点31分,星期一10.4.3 二次移动平均 线性移动平均模型的一般形式为:t-时期的序号l-由当前时期t到需要预测的时期之间的时期个数yt+l-第(t+l)时期的预测值;bt-斜率,即单位时期的变化量at-截距,即当前时期t的数据水平,at=yt第56页,共64页,2022年,5月20日,0点31分,星期一10.4.3 二次移动平均 对于线性时间序列数据,每一时期的增量总是相同的,即在一次移动平均中有 一次移动平均值比原时间序列数据滞后(n-1)/2个时期,所以第5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环评课程设计个人总结
- 白天黑夜课程设计
- 2024年生态补偿机制实施-二零二四年度植树合同范本3篇
- 悬架高度控制课程设计
- 2024年汽车租赁公司驾驶员交通事故预防与应急处理合同3篇
- 电子课程设计数字秒表
- 油泥基础造型课程设计
- 盖梁配筋课程设计
- 压床课程设计
- 测绘平差课程设计6
- 软件专业职业生涯规划
- 2025蛇年春联带横批
- 娱乐产业法律服务行业市场现状分析及未来三至五年行业预测报告
- 专题06 非连续性阅读(开放题型)-2023-2024学年八年级语文下学期期中专题复习(北京专用)(原卷版)
- 2024年世界职业院校技能大赛中职组“工程测量组”赛项考试题库(含答案)
- 半结构化面试题100题
- 静脉治疗小组管理
- 浙江省杭州二中2025届物理高三第一学期期末联考试题含解析
- 带货主播年终总结汇报
- 工地交通安全知识培训
- 消化系统护理常规
评论
0/150
提交评论