2022初一数学知识点总结归纳_第1页
2022初一数学知识点总结归纳_第2页
2022初一数学知识点总结归纳_第3页
2022初一数学知识点总结归纳_第4页
2022初一数学知识点总结归纳_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 2022初一数学知识点总结归纳人教版数学学问点七班级 三角形 1、三角形由不在同始终线上的三条线段首尾顺次相接所组成的图形。 2、推断三条线段能否组成三角形。 a+bc(ab为最短的两条线段) a-b 3、第三边取值范围:a-b 4、对应周长取值范围 若两边分别为a,b则周长的取值范围是2a 如两边分别为5和7则周长的取值范围是14 5、三角形中三角的关系 (1)、三角形内角和定理:三角形的三个内角的和等于1800。 n边行内角和公式(n-2) (2)、三角形按内角的大小可分为三类: (1)锐角三角形,即三角形的三个内角都是锐角的三角形; (2)直角三角形,即有一个内角是直角的三角形,我们通

2、常用“Rt”表示“直角三角形”,其中直角C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。 注:直角三角形的性质:直角三角形的两个锐角互余。 (3)钝角三角形,即有一个内角是钝角的三角形。 (3)、判定一个三角形的外形主要看三角形中角的度数。 (4)、直角三角形的面积等于两直角边乘积的一半。 6、三角形的三条重要线段 (1)、三角形的角平分线: 1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。(内心) (2)、三角形的中线: 1、在三角形中,连接一个顶点与它对边

3、中点的线段,叫做这个三角形的中线。 2、三角形有三条中线,它们相交于三角形内一点。(重心) 3、三角形的中线把这个三角形分成面积相等的两个三角形 学校(一班级数学)下册学问点 整式的乘法与因式分解 一、整式乘除法 单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.ac5?bc2=(a?b)?(c5?c2)=abc5+2=abc7注:运算挨次先乘方,后乘除,最终加减 单项式相除,把系数与同底数幂分别相除作为商的因式,只在被除式里含有的字母,则连同它的指数作为商的一个因式 单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得

4、的积相加,m(a+b+c)=ma+mb+mc注:不重不漏,根据挨次,留意常数项、负号.本质是乘法安排律。 多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘(a+b)(m+n)=am+an+bm+bn 乘法公式:平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.(a+b)(a-b)=a2-b2 完全平方公式:两数和或差的平方,等于它们的平方和,加或减它们积的2倍.(ab)2=a22ab+b2 因式分解:把一个多项式化成几个整式积的形式,也叫做把这个多项式分解因式. 因式分解

5、(方法): 1、提公因式法.关键:找出公因式 公因式三部分:系数(数字)一各项系数公约数;字母-各项含有的相同字母;指数-相同字母的最低次数;步骤:第一步是找出公因式;其次步是提取公因式并确定另一因式.需留意,提取完公因式后,另一个因式的项数与原多项式的项数全都,这一点可用来检验是否漏项. 留意:提取公因式后各因式应当是最简形式,即分解到“底”;假如多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的. 2、公式法.a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积a、b可以是数也可是式子a22ab+b2=(ab)2完全平方两个数平方和加

6、上或减去这两个数的积的2倍,等于这两个数的和或差的平方. x3-y3=(x-y)(x2+xy+y2)立方差公式 3、十字相乘(x+p)(x+q)=x2+(p+q)x+pq 因式分解三要素:(1)分解对象是多项式,分解结果必需是积的形式,且积的因式必需是整式(2)因式分解必需是恒等变形;(3)因式分解必需分解到每个因式都不能分解为止. 弄清因式分解与整式乘法的内在的关系:互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差 添括号法则:如括号前面是正号,括到括号里的各项都不变号,如括号前是负号各项都得改符号。用去括号法则验证 初一数学(复习方法) 初一数学主要学问点: 代数初步学问

7、1. 代数式:用运算符号“+ - ”连接数及表示数的字母的式子称为代数式.留意:用字母表示数有肯定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。 2. 几个重要的代数式:(m、n表示整数) (1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ; (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ; (4)若b0,则正数

8、是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 . 有理数 凡能写成q/p(p,q为整数且p0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0既不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;p不是有理数; 有理数加法法则: (1)同号两数相加,取相同的符号,并把肯定值相加; (2)异号两数相加,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值; (3)一个数与0相加,仍得这个数. 有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c)

9、. 有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把肯定值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数打算. 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的安排律:a(b+c)=ab+ac . 有理数除法法则:除以一个数等于乘以这个数的倒数;留意:零不能做除数。 整式的加减 单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式. 单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论