版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Article ID : 100726417 (2006) 0420346206Nonlinear modeling based on RBF neural net works identif ication and a da ptivef uzzy control of DMFC stackMIAO Qi n g ( 苗青) ,CAO Gu a n g2yi ( 曹广益) ,ZHU Xi n2j i a n ( 朱新坚)F uel Cell I ns t i t ute , S ha n gha i J i a ot o n g U n i ve rs i t y , S ha n gha
2、i 200030 , P. R. Chi n aAbstract The t e mp e rat ure models of a node a nd cat hode of direct met ha nol f uel cell ( DMFC) s t ac k w e re es t a blis he d by usi ng ra dial ba2sis f uncti on ( RB F) ne ural net w or ks i de ntificati on t ec hnique t o deal wit h t he modeli ng a nd c ont r ol p
3、r oble m of DMFC s t ac k . An a dap tive f uzzy ne ural net w or ks t e mp e rat ure c ont r olle r w as designe d bas e d on t he i de ntificati on models es t a blis he d , a nd p a ra met e rs of t he c on2 t r olle r w e re regulat e d by novel bac k p r op agati on ( B P) algorit hm . Si mulat
4、i on res ults s how t hat t he RB F ne ural net w or ks i de ntificati on modeli ng met hod is c orrect , eff ective a nd t he models es t a blis he d have good acc uracy . More ove r , p e rf or ma nce of t he a dap tive f uzzy ne ural net w or ks t e mp e rat ure c ont r olle r designe d is s up e
5、 ri or .Key words direct met ha nol f uel cell ( DMFC) s t ac k , ra dial basis f uncti on ( RB F) ne ural net w or ks , c ont r olle r .t he re a re ma ny f a ct ors aff e cti ng w or ki ng t e mp e rat ureof DM FC s t a c k , na mely , (1) t he f uel fl ow rat e of met ha n ol a n d air , ( 2) t h
6、e i nlet t e mp e rat ure of met ha 2 n ol a n d air , ( 3) f uel utilit y , ( 4) c urre nt de nsit y a n d p ola rizati o n c urve , etc . In t his p ap e r , t he i nfl ue nc e of diff e re nt f uel fl ow rat e of met ha n ol a n d air o n t he w or ki ng t e mp e rat ure of DM FC s t a c k is s t
7、 u die d . Thet es ti ng c o n diti o n of DM FC s t a c k is as f oll ows . The i n 2 let t e mp e rat ure of ai r is 40 C , t he i nlet t e mp e rat ure of met ha n ol 60 , ai r f uel utilit y 30 % , met ha n ol f uelutilit y 60 % , c urre nt de nsit y 100 mAc m2 , fl ow rat e of met ha n ol 5 - 5
8、0 mLmi n , a n d fl ow rat e of ai r 5 - 75 mLmi n . U n de r t his t es ti ng c o n diti o n , 1 200 gr o up s of w or ki ng t e mp e rat ure resp o ns e val ues u n de r diff e re ntf uel fl ow rat es of met ha n ol a n d air a re o bt ai ne d . Thes e a re us e d as t rai ni ng dat a f or RB F ne
9、 ural net w or ksi de ntific ati o n m o del a n d f uzzy c o nt r olle r of DM FCs t a c k .The res t of t his p ap e r is orga nize d as f oll ows . InSe cti o n 2 , a brief a nalysis of t he w or ki ng p ri ncip le a n dc ha ra ct e ris tics of DM FC s t a c k a re p res e nt e d . In Se c 2ti o
10、n 3 , w e des c ri be t he t e mp e rat ure m o deli ng p r oc ess i n det ail wit h RB F ne ural net w or k us e d t o s et up a n o nli ne a r t e mp e rat ure m o del of DM FC s t a c k . In Se c 2 ti o n 4 , a n o n2li ne n ovel a dap tive f uzzy ne ural net w or ksc o nt r olle r of DM FC s t a
11、 c k is designe d , a n d t he p a ra me 2t e rs of t he c o nt r olle r a re re gulat e d by n ovel B P algo 2rit h m . Fi nally , si m ulati o n res ults a re give n .1 IntroductionDire ct met ha n ol f uelc ell ( DM FC ) is desira ble t os e rve as t he p ow e r s ys t e m f or p ort a ble de vic
12、 es s uc h asc ell ula r p h o nes , p ort a ble c o mp ut e rs , etc . d ue t o t he t he oretic ally high e ne rgy de nsit y a n d t he liqui d f uel1 , 2us e d t hat c a n be s t ore d a n d t ra nsp ort e d s af ely .Pe rf or ma nc e a n d a vaila bilit y of DM FC s t a c k a re he a vily dep e
13、n de nt o n its op e rati ng t e mp e rat ure . The ra nge of t e mp e rat ure f or s t a ble op e rati ng of DM FCs t a c k is a b o ut 60 - 130 C , a n d t he n or mal op e rati ngt e mp e rat ure is a b o ut 80 C . Whe n op e rati ng t e mp e ra 2t ure is bel ow 60 C , p e rf or ma nc e of DM FC
14、s t a c k dr op ssignific a ntly . How e ve r , a highe r op e rati ng t e mp e rat ure is f a vora ble f or i mp r ovi ng t he p e rf or ma nc e of DM FC s t a c k . B ut , w he n t he op e rati ng t e mp e rat ure is highe rt ha n 130 C , me m bra ne dry a c c ele rat es , a n d ele ct r o 2lyt e
15、de c o mp ositi o n i nc re as es , w hic h i nc re as e t he ris k of s h ort2ci rc uit a n d s h ort e n t he s t a c k lif esp a n 2 25 . S o , c o nt r ol of t he op e rati ng t e mp e rat ure wit hi n a sp e cifie d ra nge a n d re d uci ng t e mp e rat ure fl uct uati o n a re i mp or 2t a nt
16、.Ac c or di ng t o e xp e ri me nt al a nalysis of DM FC s t a c k ,Receive d Oct . 29 , 2004 ; Revis e d Dec . 27 , 2004Pr oject s upp ort e d by Nati onal High2Tec hnol ogy Res ea rc h a nd De2vel op me nt Pr ogra m of Chi na ( Gra nt N o . 2003AA517020) MIAO Qi ng , Ph . D . Ca ndi dat e , E2mail
17、 : mia oqi ng sjt u . org ;CAO Gua ng2yi , Ph . D . , Pr of . , E2mail : gy2ca o sjt u . e du . c n Vol . 10 N o . 4 Aug . 2006 MIAO Q , et al . : N o nli ne a r m o deli ng bas e d o n RB F ne ural net w or ks . . . 347 Ac c or di ng t o DM FC s t a c k dyna mic c ha ra ct e ris tic , de 22 Descrip
18、tion and analysisstackThe s c he matic dia gra m of t he dire ct c ell a n d a p h ot o of DM FC si ngle c ellof DMFCTfi ni ng V ( t ) = va ( t ) , vc ( t ) , ( t ) = a ( t ) , ( t ) , ( t ) , ( t ) T , t he t e mp e rat ure m o del of DM2cebmet ha n ol f uela re s h ow n i nFC c a n be des c ri be
19、d asd( t )= f ( t ) , V ( t ) .( 1)Figs . 1 a n d 2 , resp e ctively . DM FC c o nsis ts of a n o de ,c at h o de , ele ct r olyt e me m bra ne , c at alys t la ye rs , diff u 2d tB as e d o n e xp e rie nc es , t he t e mp e rat ure of a n o de ,c at h o de , ele ct r olyt e la ye r a n d bip ola r
20、 p lat es mai nly dep e n d o n t hre e f a ct ors : he at e mitt e d by ele ct r o 2 c he mic al re a cti o n t hat i nc re as es t he t e mp e rat ure , c o n 2 ve cti o n he at of e x ha us t e d gas es a n d c o n d ucti o n he at oft he s t a c k ha r dw a re t hat l ow e r t he t e mp e rat ur
21、e . The f uel fl ow rat e of c at h o de a n d a n o de c a n i nfl ue nc e t he t e mp e rat ure of DM FC . Sl ow fl ow rat e of f uel le a ds t oa n a de quat e re a cti o n , les s he at l os t , a n d highe r t e m 2p e rat ure p r o d uc e d . O n t he ot he r ha n d , f as t fl ow of f uel res
22、 ults i n a n i na de quat e re a cti o n , wit h m uc h m ore he at fl owi ng a w a y wit h t he re m na nt f uel , le a di ng t ol ow e r t e mp e rat ure . Th us , s t e a dy t e mp e rat ure of t he s t a c k va ries wit h t he fl ow rat e of f e e di ng f uel of a n o de a n d c at h o de i n a
23、 c o mp le x ma n ne r . In ge ne ral , i n or de r t o c o ol t he s t a c k a n d e ns ure f ull us e of t he f uel , it is as s u me d t hat o xi da nt is e xc es sive a n d t he f uel s up p lyrat e is n ot be yo n d t he ma xi m u m re a cti o n rat e c ap a cit y6 , 7si o n la ye rs , fl ow c
24、ha n nels , a n d bip ola r p lat es .1 , 7 - Cat hode a nd a node fl ow c ha nnels ; 2 , 6 - Cat hode a nd a node diff usi on laye rs ; 3 , 5 - Cat hode a nd a node cat alys t laye rs ; 4 - Me mbra ne ;8 , 9 - Cat hode a nd a node bip ola r plat esFig. 1 A s c he matic diagra m of DMFC2 , 3of t he
25、s t a c k . To f a cilit at e m o deli ng a n d c o nt r ol de 2signi ng , t he ai m of m o del i de ntific ati o n is t hat t he es 2t a blis he d m o del c a n dyna micly si m ulat e t he va ryi ng t e mp e rat ure c urve of t he s t a c k bas e d o n diff e re nt f uel fl ow rat e . The f oll owi
26、 ng diff e re ntial e quati o n is us e d t o des c ri be t he t e mp e rat ure m o del of DM FC s t a c k .Fig. 2 Phot o of DMFC si ngle cell( k + 1) = f ( k) , V ( k) .(2)In a DM FC , t he f oll owi ng c at alytic ally a ctivat e d re 2a cti o ns t a ke p la c e .An o de re a cti o n :3Identif ica
27、tionstructure and DMFCstack algorithm ba sed on RBF neuralnet works3. 1Structure of RBF neural net worksRB F ne ural net w or ks ha ve go o d ap p r o xi mati o n a bili 2t y a n d high a c c ura c y i n c o nt ras t t o t he B P ne ural net 2+-CH3 O H + H2 O CO2 + 6 HCat h o de re a cti o n :+ 6e .
28、3 O+-+ 6 H + 6e3 H O .222Tot al re a cti o n :3CH3 O H + 2 O2 + H2 O CO2 + 3 H2 O .i2t h RB F ne ural net w or ks o utp ut c a n bew or ks . Therep res e nt e das a li ne a rly w eight e d s u m:Nof Nbasisby a ( t ) , t heele ct r olyt e la ye rThe a n o de t e mp e rat ure is de n ot e dc at h o de
29、 t e mp e rat ure by c ( t ) , t he2 , 3f u ncti o nst e mp e rat ure by e ( t ) a n d t he bip ola r p lat es t e mp e ra 2t ure by b ( t ) , resp e ctively . va ( t ) a n d vc ( t ) a re t he a n o de a n d t he c at h o de f uel fl ow rat e , resp e ctively .i ( )+ wX k, i = 1 , 2 ,j ij ( ) )( )Y
30、 k = w, m ,30 ij = 12 2X ( k) - Cj jj ( X ( k) ) = e xp,( 4) HYPERLINK :/www / 1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. 348 J o u r n al of S h a n gh a i U n i ve r s i t y de n ot e w eights , j ( X ( k ) ) is aw he re a n dw j iw 0 i(7)(8) ( 9)F = f , f ,
31、 f, f ,12m - 1mNGa ussia n a ctivati o n f u ncti o n , Cj ( j = 1 , 2 , N ) RE = e , e , e, e ,12m - 1mis t he c e nt e r of t he j2t h hi d de n n o de , wit h t he s a medi me nsi o n as t he i np ut ve ct or X , j is t he wi dt h of t hej2t h hi d de n u nit .W = w 1 , w 2 , w m - 1 , w m , = (
32、)1 , 2 ,n - 1 ,n .10L et a n ort h ogo nal mat ri x be = BA .Furt he r defi neAW = Q .de c o mp ositi o noft here gres sive3 . 2Identif ication system and study algorithmof RBF neural net works( 11)In or de r t o i mp r ove ge ne ralizati o n a bilit y of net w or ka n d a voi d ove r2fitti ng p r o
33、 d uc e d by OLS algorit h m , ROLS algorit h m ref e rre d t o Ref . 8 - 10 is e xt e n de dt o a m ulti2i np ut a n d m ulti2o utp ut s ys t e m . This algo2rit h m is us e d t o es t a blis h a t e mp e rat ure m o del of DM 2FC s t a c k .A wi de class of n o nli ne a r s ys t e ms c a n be des
34、c ri be d by t he f oll owi ng n o nli ne a r a ut ore gres sive m o del wit h(12)( 6) c a n alt e r natively be e x2The RB F net w or k m o delp ress e d as :Y = BAW + E = B Q + E , w he re(13)8 210e x oge n o us i np uts .Y( k) = F ( Y( k - 1) ) ,(14)B = b1 , b2 , bm - 1 , bm , a 1 , m, Y( k - n y
35、 ) , U ( k - 1) ,10a 1 , 21, U ( k - n u ) ) + e ( k) ,(5)A =,(15)w he re Y ( k ) is a n o utp ut ve ct or , U ( k ) is a n i np utve ct or , n y a n d n u a re la gs of t he o utp ut a n d t he i np ut resp e ctively , F ( ) is a n o nli ne a r f u ncti o n , a n d e ( k)is w hit e n ois e ve ct or
36、 i n t he s ys t e m .0am - 1 , m01(16)W of RB F ( 12 ) . TheQ = q1 , q2 ,S o , k n owi ng, qm - 1 , qm .A a n d Q , t he w eights ve ct orTFor DM FC s t a c k , U ( k ) = va ( k) , vc ( k ) is t hei np ut ve ct or , na mely f uel fl ow rat e of a n o de a n d c a 2t h o de of t he di re ct met ha n
37、 ol f uel c ell s t a c k , resp e c 2ne ural net w or k m o del c a n be s olve d f r o m8 210ze r o ra n k re gula rize d e rr or c rit e ri o n is as f oll ows.TTT J R ( Q ,) = t ra c e ( E E + Q Qtively . Y( k) = a ( k) ,c ( k) ,e ( k) ,b ( k) is t heo utp ut ve ct or , na mely t he a n o de t e
38、 mp e rat ure , t he c a 2t h o de t e mp e rat ure , t he ele ct r olyt e la ye r t e mp e rat ure a n d t he bip ola r p lat es t e mp e rat ure , resp e ctively . The)= t ra c e ( YT Y - Q T ( B T B + ) Q ) ,( 17)w he re = 1 , 2 ,p a ra met e r ve ct or .,m - 1 ,m is t he re gula rizati o ns t r
39、uct ure s c he me of i de ntific ati o n s ys t e m bas e dRB F ne ural net w or k is s h ow n i n Fig . 3 .o n3 . 3 Modeling test procedureThe MA TLAB ne ural net w or k t o ol b o x is us e d t o p e r 2 f or m t he t rai ni ng a n d si m ulati o n . Fi rs t , 1 200 gr o up s of w or ki ng t e mp
40、e rat ure resp o ns e val ues a re s ele ct e d ase xp e ri me nt dat a u n de r diff e re nt t he f uel fl ow rat e ofa n o de a n d c at h o de . The op e rati ng c o n diti o n p a ra me 2t e rs a n d p hysics c ha ra ct e ris tic p a ra met e rs of DM FC s t a c k a re lis t e d i n Ta ble 1 . A
41、 p h ot o of c o nt r olli ng a n d t es ti ng s ys t e m of DM FC s t a c k is s h ow n i n Fig . 4 .Se c o n dly , i n or de r t o ma ke all i np ut a n d o utp utf alli ng i nt o ( 0 , 1 ) , t he f oll owi ng n or malizati o n isFig. 3 Ide ntificati on s t r uct ure of DMFC s t ac k bas e d onRB
42、F ne ural net w or ks2 , 3The m ulti2i np ut a n d m ulti2o utp utus e d:s ys t e mc a nbew ritt e n i n a li ne a r a ut ore gressive f or m asY = F + E = W + E , w he reX -Xmi n + d1(18)X=,Xma x - Xmi n + d2(6)w he re X is t he origi nal dat a , Xma x is t he ma xi m u m of HYPERLINK :/www / 1994-
43、2014 China Academic Journal Electronic Publishing House. All rights reserved. Vol . 10 N o . 4 Aug . 2006 MIAO Q , et al . : N o nli ne a r m o deli ng bas e d o n RB F ne ural net w or ks . . . 349 X , Xmi n is t he mi ni m u m of X , Xis t he res ult of n or2malizati o n . He re , 0 d1 d2 0 . 1 ,
44、c h o osi ng d1 =0 . 06 , d2 = 0 . 1 .p e rf or m dyna mic i de ntific ati o n si m ulati o n of t he DM FC s t a c k. U n de r va ri o us gas fl ow rat es , c o mp a ri ng t he dis c ret e t e mp e rat ure val ues c alc ulat e d by t he ne ural net w or ks wit h a ct ual s a mp le d t e mp e rat ur
45、e dat a o b 2t ai ne d f r o m t he e xp e ri me nt of DM FC s t a c k , t he si m u 2lati o n res ults a re s h ow n i n Fig . 5 . The si m ulati o n re 2s ults i n dic at e t hat t he RB F ne ural net w or ks m o del c a n i mit at e t he dyna mic t e mp e rat ure resp o ns e of a ct uals t a c k
46、, a n d t he ma xi mal e rr or is n ot be yo n d 2 C . Forsi mp licit y a n d ge ne ralit y , i n Fig . 5 , o nly t he c o mp a ri ngres ults of a n o de a n d c at h o de c e nt e rs t e mp e rat ures ofThe p urp os e of RB F ne ural net w or k t rai ni ng ist omi ni mize me a n s qua re e rr ors (
47、MS E) 2 , 3: 12EMS E = N ( yj ( k) -yj ( k) ) ,(19)j kof e xp e ri me nt al dat a , yj ( k )w he re N is t he n u m be ra n d yj ( k) a re t he desi re d o utp ut of DM FC s t a c k a n dt he o utp ut of net w or k m o del at t he k2t h s a mp le ti me .Ta ble 1 Physical c ha ract e ris tic p a ra m
48、et e rs a nd op e rati ng c ondi2ti on p a ra met e rs of DMFC s t ac kc o2fl ow t yp e DM FC s t a c k at f o ur diff e re nt gasrat es a re give n .fl owPa ra met e rsVal uesLe ngt h wi dt h t hic knessElect rolyt e me mbra neAnode cat alys t laye r30 mm 30 mm 1 . 5 mmNafi on 115PtC : 20 wt % , Ru
49、 : 10 wt %10 wt % Nafi on s ol uti on , ca rbon p ow de r10 wt %Nafi on s ol uti on , PtC10 wt % P TF E s ol uti on , ca rbon p ow de rGrap hit e plat e60 - 130 CAnode diff usi on laye rCat hode cat alys t laye rCat hode diff usi on laye rBip ola r mat e rialWork t e mp e rat ure of DMFC Work p ress
50、 ure of t he a node a ndcat hodeMet ha nol c once nt rati on( a ) Ide ntificati on res ults of a node t e mp e rat ure0 . 3 MPa1 . 0 molL5 - 50 mLmi n5 - 75 mLmi n- 1 . 5 - + 1 . 5 Cs80 CFl ow rat e of met ha nolFl ow rat e of airError c ha nge of t e mp e rat ureThe op ti mal t e mp e rat ure val u
51、e( b) Ide ntificati on res ults of cat hode t e mp e rat ureFig. 5 Ide ntificati on res ults unde r 4 diff e re nt f uel fl ow rat esAda ptive f uzzy neural net works con2trol of DMFC stackIn t his s e cti o n , a n i de ntific ati o n m o del is t rai ne d i n 2s t e a d of t he re al DM FC s t a c
52、 k , a n d a n o n2li ne a dap tive f uzzy ne ural net w or ks t e mp e rat ure c o nt r olle r designe d . The s c he me of a dap tive f uzzy ne ural net w or ks c o nt r ols ys t e m of DM FC s t a c k is s h ow n i n Fig . 6 .4Fig. 4 Phot o of c ont r olli ng a nd t es ti ng s ys t e m of DMFC s
53、t ac k3. 4Simulation resultsD uri ng RB F ne ural net w or kt rai ni ng , t he desi re dMS E is 1 C . To vali dat e t he fi nal RB F ne ural net w or ksm o del , t he ne ural net w or ks t rai ne d a b ove is us e d t o HYPERLINK :/www / 1994-2014 China Academic Journal Electronic Publishing House.
54、All rights reserved. 350 J o u r n al of S h a n gh a i U n i ve r s i t y i nt e grat es all a cti o ns re c o m 2a n d 4 a n d a cts a cle a re dLayer 5me n de d by op e rati o n .The n o deL a ye rs 3(4)a i(5) i (24)a=(3) .a iiFig. 6 Sc he me of a dap tive f uzzy ne ural net w or ksc ont r ol s y
55、s t e m of DMFC s t ac kThe e xp ressi o n of m i j a n d i j w hic h a re a dap tively re2gulat e d by B P algorit h m a re give n as f oll ows :Ac c or di ng t o t he e xp e ri me nts , w he n op e rati o n p res 2s ure a n d t e mp e rat ure of DM FC s t a c k a re 0 . 3 M Pa a n d80 C , resp e c
56、tively , t he c ha ra ct e ris tic of s t a c k is op ti 25 E(2)m(2)( t + 1) =( t ) - m i ji j(2)5 m i j(3)35 a k5 E5 ymal. Ch o os e T= 80 C ast he i de al t e mp e rat ure ofC as t he t e mp e rat ureC as t he ra nge of t e m 2(2)m( t ) - (25)=,i j5 y5 E(3)(2)5 a k 5 m i jkDM FC s t a c k , T = 50
57、 - 130 ra nge , T = - 1 . 5 - + 1 . 5(2)(2)( t + 1) = i j ( t ) - i j(2)5i jp e rat ure e rr or , resp e ctively . Furt he r m ore , s ele ctTa n d T as f uzzy va ria ble , w he n T is highe r t ha n T 3 ,i nc re as e t he fl ow rat e of f uel ; a n d w he n T is l ow e r5 a (3)5 E5 yk= (2)( t ) - ,
58、( 26)i j5 y5 a (3) 5(2)kk i j311 , 12t ha n T , l ow e r t he fl ow rat e of f uel .4 . 1 Structure and study algorithm of f uzzy neural net works controllerAn o n2li ne n ovel a dap tive f uzzy ne uralw he rea da ptive5 E5 y = y ( t ) -yi deal ( t ) ,(27)net w or ks(4) 5 y a k - y=,(28)c o nt r oll
59、e r ref e rre d t o Ref . 11 - 13 is de vel op e d , t hep a ra met e rs of t he a dap tive f uzzy ne ural net w or ks c o n 2t r olle r a re re gulat e d by a n ovel B P algorit h m . Thef u ncti o ns of t he n o des i n e a c h of t he five la ye rs of a da 2p tive f uzzy ne ural net w or ks a re
60、des c ri be d as f oll ows .5 a (3)(3)a iik2 ( xi -m i j ),(3)a5 a (3)k2ki j(29)=5 m (2)i j0 ,Layer 1Ea c h n o de o nly t ra ns mits i np ut val ues t o22 ( x i - m i j ) (3)5 a (3)a k,t he ne xt la ye r .3ki j(30)=(2)5i j(1) (1)a = u i = xi ,(20)0 .Simulation results( k)( k)w he re u a n d a de n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乐队训练第二学期计划2篇
- 主诊医师述职报告范文(6篇)
- 中学生繁星春水读后感
- 高职伤逝课件教学课件
- 探究性阅读课教案
- 美术大纲课件教学课件
- 轮椅车座椅 第14部分:与外力控制以维持组织完整性有关的概念 征求意见稿
- 农小蜂-中国香蕉市场动态监测(2024年10月)
- 八年级上学期语文1月月考试卷
- 初中化学基础知识与题目(含答案)
- 山东省汽车维修工时定额(T-SDAMTIA 0001-2023)
- 电脑故障检测报告
- 春节期间的传统烟花和焰火表演
- 绿植花卉租摆及园林养护服务 投标方案(技术方案)
- 会展概论-来逢波-习题答案
- 广东小学生诗词大赛备考试题库400题(三四年级适用)
- 排烟机房管理制度
- 关于课程与教材建设的研究报告
- 阿基米德-人物介绍-最终最牛版
- 2022年全国高考体育单招考试语文押题卷模拟试题一(含答案解析)
- 大连理工大学《877经济学原理》历年考研真题汇编(含部分答案)合集
评论
0/150
提交评论