山东省青岛市城阳九中学2022年数学九年级第一学期期末统考模拟试题含解析_第1页
山东省青岛市城阳九中学2022年数学九年级第一学期期末统考模拟试题含解析_第2页
山东省青岛市城阳九中学2022年数学九年级第一学期期末统考模拟试题含解析_第3页
山东省青岛市城阳九中学2022年数学九年级第一学期期末统考模拟试题含解析_第4页
山东省青岛市城阳九中学2022年数学九年级第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1用配方法解一元二次方程ax2+bx+c=0(a0),此方程可变形为()ABCD2下列一元二次方程中,两个实数根之和为2的是()A2x2+x20Bx2+2x20C2x2x10Dx22x203如图,C过原点,与x轴、y轴分别交于A、D两点已知OB

2、A=30,点D的坐标为(0,2),则C半径是()ABCD24下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中既是轴对称图形,又是中心对称图形的是( )ABCD5如图,平行四边形的顶点,在轴上,顶点在上,顶点在上,则平行四边形的面积是( )ABCD6如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动若点M、N的坐标分别为(-1,-1)、(2,-1),点B的横坐标的最大值为3,则点A的横坐标的最小值为( )A-3B-2.5C-2D-1.57如图,矩形的边在x轴上,在轴上,点,把矩形绕点逆时针旋转,使点恰好落在边上的处,则点的对应点的坐标为

3、( )ABCD8把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是( )ABCD9如图,ABC的顶点在网格的格点上,则tanA的值为()ABCD10如图,在平面直角坐标系中,直线分别交轴,轴于两点,已知点的坐标为,若为线段的中点,连接,且,则的值是( )A12B6C8D4二、填空题(每小题3分,共24分)11一元二次方程的根是_12在ABC中,ABC = 30,AB = ,AC =1,则ACB 的度数为_.13已知二次函数y(x2)23,当x2时,y随x的增大而_(填“增大”或“减小”)14在平面直角坐标系中,点P的坐标为(4,0),半径为1的动圆P沿x轴正方向运动,若运动后P与y

4、轴相切,则点P的运动距离为_15图形之间的变换关系包括平移、_、轴对称以及它们的组合变换16如图,将矩形绕点旋转至矩形位置,此时的中点恰好与点重合,交于点.若,则的面积为_17已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是_cm2.18在ABC中,已知(sinA-)2+tanB-=1那么C=_度三、解答题(共66分)19(10分)如图,为的直径,平分,交于点,过点作直线,交的延长线于点,交的延长线于点(1)求证:是的切线(2)若,求的长20(6分)如图,为了测得旗杆AB的高度,小明在D处用高为1m的测角仪CD,测得旗杆顶点A的仰角为45,再向旗杆方向前进10m,又测得旗杆顶点A的仰

5、角为60,求旗杆AB的高度21(6分)如图,一块矩形小花园长为20米,宽为18米,主人设计了横纵方向的等宽小道路(图中阴影部分),道路之外种植花草,为了使种植花草的面积达到总面积的80%,求道路的宽度.22(8分)已知抛物线.(1)当,时,求抛物线与轴的交点个数;(2)当时,判断抛物线的顶点能否落在第四象限,并说明理由;(3)当时,过点的抛物线中,将其中两条抛物线的顶点分别记为,若点,的横坐标分别是,且点在第三象限.以线段为直径作圆,设该圆的面积为,求的取值范围.23(8分)如图,点C在以AB为直径的圆上,D在线段AB的延长线上,且CA=CD,BC=BD(1)求证:CD与O相切;(2)若AB=

6、8,求图中阴影部分的面积24(8分)如图,已知中,为上一点,以为直径作与相切于点,连接并延长交的延长线于点(1)求证:;(2)若,求的长25(10分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为40米的篱笆围成已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米(1)若苗圃园的面积为102平方米,求x;(2)若使这个苗圃园的面积最大,求出x和面积最大值.26(10分)某服装柜在销售中发现:进货价为每件元,销售价为每件元的某品牌服装平均每天可售出件,现商场决定采取适当的降价措施,扩大销售量,增加盈利,经市场调查发现:如果每件服装降价元,那么平均每天就可多

7、售出件,要想平均每天销售这种服装盈利元,同时又要使顾客得到较多的实惠,那么每件服装应降价多少元?参考答案一、选择题(每小题3分,共30分)1、A【解析】首先进行移项,然后把二次项系数化为1,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式【详解】ax2+bx+c=0,ax2+bx=c,x2+x=,x2+x+=+,(x+)2=.故选A.2、D【分析】利用根与系数的关系进行判断即可【详解】方程1x1+x1=0的两个实数根之和为;方程x1+1x1=0的两个实数根之和为1;方程1x1x1=0的两个实数根之和为;方程x11x1=0的两个实数根之和为1故选D

8、【点睛】本题考查了根与系数的关系:若x1,x1是一元二次方程ax1+bx+c=0(a0)的两根时,x1+x1,x1x13、B【解析】连接ADAOD=90,AD是圆的直径在直角三角形AOD中,D=B=30,OD=2,AD= ,则圆的半径是 故选B点睛:连接AD根据90的圆周角所对的弦是直径,得AD是直径,根据等弧所对的圆周角相等,得D=B=30,运用解直角三角形的知识即可求解4、C【分析】根据轴对称图形和中心对称图形的定义,即可得出答案【详解】A不是轴对称图形,也不是中心对称图形;B不是轴对称图形,也不是中心对称图形;C是轴对称图形,也是中心对称图形;D是轴对称图形,不是中心对称图形故选:C【点

9、睛】轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合5、D【分析】先过点A作AEy轴于点E,过点C作CDy轴于点D,再根据反比例函数系数k的几何意义,求得ABE的面积=COD的面积相等=|k2|,AOE的面积=CBD的面积相等=|k1|,最后计算平行四边形的面积【详解】解:过点A作AEy轴于点E,过点C作CDy轴于点D,根据AEB=CDO=90,ABE=COD,AB=CO可得:ABECOD(AAS),SABE与SCOD相等,又点C在的图象上,SABE=SCOD =|k2|,同理可得:SAOE =SCBD =|k1|,平行四边形OABC

10、的面积=2(|k2|+|k1|)=|k2|+|k1|=k2-k1,故选D【点睛】本题主要考查了反比例函数系数k的几何意义,在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变6、C【分析】根据顶点P在线段MN上移动,又知点M、N的坐标分别为(-1,-2)、(1,-2),分别求出对称轴过点M和N时的情况,即可判断出A点坐标的最小值【详解】解:根据题意知,点B的横坐标的最大值为3,当对称轴过N点时,点B的横坐标最大,此时的A点坐标为(1,0),当对称轴过M点时,点A的横坐标最小,此时的B点坐标为(0,0),此时A点的坐标最小为(-2,0),点

11、A的横坐标的最小值为-2,故选:C.【点睛】本题主要考查二次函数的综合题的知识点,解答本题的关键是熟练掌握二次函数的图象对称轴的特点,此题难度一般7、A【分析】作辅助线证明ON,列出比例式求出ON=, N=即可解题.【详解】解:过点作x轴于M,过点作x轴于N,由旋转可得,ON,OC=6,OA=10,ON:O=:OM:O=3:4:5,ON=, N=,的坐标为,故选A.【点睛】本题考查了相似三角形的性质,中等难度,做辅助线证明三角形相似是解题关键.8、A【解析】试题分析:根据平行投影特点以及图中正六棱柱的摆放位置即可求解把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形考点:平

12、行投影9、A【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案【详解】解:如图作CDAB于D,CD=,AD=2,tanA=,故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边10、A【分析】根据“一线三等角”,通过构造相似三角形,对m的取值进行分析讨论即可求出m的值.【详解】由已知得,. 如图,在轴负半轴上截取, 可得是等腰直角三角形,. 又,即,解得(舍去)或,的值是12. 【点睛】本题考查了相似三角形的判定与性质的知识点,解题时还需注意分类讨论的数学思想的应用二、填空题(每小题3分,共24分)1

13、1、【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可【详解】解:或,所以故答案为【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法12、60或120.【分析】作ADBC于D,先在RtABD中求出AD的长,解直角三角形求出ACD,即可求出答案【详解】如图,作ADBC于D,如图1,在RtABD中, ABC = 30,AB = ,AC =1,AD=AB=,在RtACD中,sinC=,C=60,即ACB=60,同理如图2,同理可得ACD=60,ACB=120.故答案为60或120.【点

14、睛】此题主要考查三角函数的应用,解题的关键是根据题意分情况作出图形求解.13、减小【分析】根据题目的函数解析式和二次函数的性质,可以得到当x2时,y随x的增大如何变化,本题得以解决【详解】二次函数y(x2)23,抛物线开口向上,对称轴为:x=2,当x2时,y随x的增大而增大,x2时,y随x的增大而减小,故答案为:减小【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答14、3或1【解析】利用切线的性质得到点P到y轴的距离为1,此时P点坐标为(-1,0)或(1,0),然后分别计算点(-1,0)和(1,0)到(-4,0)的距离即可【详解】若运动后P与y轴相切,则点P到y

15、轴的距离为1,此时P点坐标为(-1,0)或(1,0),而-1-(-4)=3,1-(-4)=1,所以点P的运动距离为3或1故答案为3或1【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径15、旋转【分析】图形变换的形式包括平移、旋转和轴对称【详解】图形变换的形式,分别为平移、旋转和轴对称故答案为:旋转【点睛】本题考查了图形变换的几种形式,分别为平移、旋转和轴对称,以及他们的组合变换16、【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,ACD=30,再由旋转后矩形与已知矩形全等及矩形的性质得到DAE为30,进而得到EAC=ECA,利用等角对等边得到AE=C

16、E,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积【详解】旋转后AC的中点恰好与D点重合,即AD= AC=AC,在RtACD中,ACD=30,即DAC=60,DAD=60,DAE=30,EAC=ACD=30,AE=CE,在RtADE中,设AE=EC=x,AB=CD=6DE=DC-EC=AB-EC=6-x,AD=CDtanACD=6=2,根据勾股定理得:x2=(6-x)2+(2 )2,解得:x=4,EC=4,则SAEC=ECAD=4故答案为:4【点睛】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理,以及

17、等腰三角形的性质,熟练掌握性质及定理是解本题的关键17、15【解析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,r=3,h=4, 母线l=,S侧=2r5=235=15,故答案为15.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.18、2【分析】直接利用非负数的性质和特殊角的三角函数值求出A,B的度数,进而根据三角形内角和定理得出答案【详解】(sinA)2+|tanB|=1,sinA1,tanB1,sinA,tanB,A=45,B=61,C=181-A-B=181-45-61=2故答

18、案为:2【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解答本题的关键三、解答题(共66分)19、(1)证明见解析;(2)6【分析】(1)要证CD是O的切线,只要连接OE,再证OECD即可(2)由勾股定理求得AB的长即可【详解】证明:(1)如图,连接OE,OA=OE,OAE=OEAAE平分CAD,OAE=DAE OEA=DAE OEAD DEAD,OEDEOE为半径,CD是O的切线(2)设O的半径是r,CD是O的切线,OEC=90由勾股定理得:OE 2 +CE 2 =OC 2 ,即 ,解得r=3,即AB的长是6【点睛】本题综合性较强,既考查了切线的判定,要证某线是圆的切线,已知此线过圆

19、上某点,连接圆心与这点(即为半径),再证垂直即可同时考查了勾股定理,作出辅助线是本题的关键20、(16+5)米【详解】设AG=x在RtAFG中,tanAFG=,FG=,在RtACG中,GCA=45,CG=AG=x,DE=10,x=10,解得:x=15+5,AB=15+5+1=16+5(米)答:电视塔的高度AB约为(16+5)米考点:解直角三角形的应用仰角俯角问题21、道路的宽度为2米.【分析】如图(见解析),小道路可看成由3部分组成,设道路的宽度为x米,利用长方形的面积公式建立方程求解即可.【详解】如图,小道路可看成由3部分组成,设道路的宽度为x米,道路1号的长为a,道路3号的长为b,则有依题

20、意可列方程:整理得:,即解得:因为花园长为20米,所以不合题意,舍去故道路的宽度为2米.【点睛】本题考查了一元二次方程的实际应用,依据题意建立方程是解题关键.22、(1)抛物线与轴有两个交点;(2)抛物线的顶点不会落在第四象限,理由详见解析;(3).【分析】(1)将,代入解析式,然后求当y=0时,一元二次方程根的情况,从而求解;(2)首先利用配方法求出顶点坐标,解法一:假设顶点在第四象限,根据第四象限点的坐标特点列不等式组求解;解法二:设,则,分析一次函数图像所经过的象限,从而求解;(3)将点代入抛物线,求得a的值,然后求得抛物线解析式及顶点坐标,分别表示出A,B两点坐标,并根据点A位于第三象

21、限求得t的取值范围,利用勾股定理求得的函数解析式,从而求解.【详解】解:(1)依题意,将,代入解析式得抛物线的解析式为.令,得,抛物线与轴有两个交点.(2)抛物线的顶点不会落在第四象限.依题意,得抛物线的解析式为,顶点坐标为.解法一:不妨假设顶点坐标在第四象限,则,解得.该不等式组无解,假设不成立,即此时抛物线的顶点不会落在第四象限.解法二:设,则,该抛物线的顶点在直线上运动,而该直线不经过第四象限,抛物线的顶点不会落在第四象限.(3)将点代入抛物线:,得,化简,得.,即,此时,抛物线的解析式为,顶点坐标为.当时,.当时,.点在第三象限,.又,点在点的右上方,.,当时,随的增大而增大,.又.,

22、随的增大而增大,.【点睛】本题属于二次函数综合题,综合性较强,掌握二次函数的图像性质利用属性结合思想解题是本题的解题关键.23、(1)见解析; (2)【分析】(1)连接OC,由圆周角定理得出ACB=90,即ACO+BCO=90,由等腰三角形的性质得出A=D=BCD,ACO=A,得出ACO=BCD,证出DCO=90,则CDOC,即可得出结论;(2)证明OB=OC=BC,得出BOC=60,D=30,由直角三角形的性质得出CD=OC=4,图中阴影部分的面积=OCD的面积-扇形OBC的面积,代入数据计算即可【详解】证明:连接OC,如图所示:AB是O的直径,ACB=90,即ACO+BCO=90,CA=CD,BC=BD,A=D=BCD,又OA=OC,ACO=A,ACO=BCD,BCD+BCO=ACO+BCO=90,即DCO=90,CDOC,OC是O的半径,CD与O相切;(2)解:AB=8,OC=OB=4,由(1)得:A=D=BCD,OBC=BCD+D=2D,BOC=2A,BOC=OBC,OC=BC,OB=OC,OB=OC=BC,BOC=60,OCD=90,D=90-60=30,CD=OC=4,图中阴影部分的面积=OCD的面积-扇形OBC的面积=44-=8-【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的判定与性质、等边三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论