2023届吉林省吉林市普通中学数学九年级第一学期期末质量检测模拟试题含解析_第1页
2023届吉林省吉林市普通中学数学九年级第一学期期末质量检测模拟试题含解析_第2页
2023届吉林省吉林市普通中学数学九年级第一学期期末质量检测模拟试题含解析_第3页
2023届吉林省吉林市普通中学数学九年级第一学期期末质量检测模拟试题含解析_第4页
2023届吉林省吉林市普通中学数学九年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1下列方程中,属于一元二次方程的是( )ABCD2如图

2、所示的几何体,它的左视图是()ABCD3如图,四边形ABCD内接于0,四边形ABCO是平行四边形,则ADC的度数为( )A30B45C60D754若反比例函数的图象上有两点P1(1,y1)和P2(2,y2),那么( )Ay1y20By2y10Cy1y20Dy2y105袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球下列事件是必然事件的是( )A摸出的三个球中至少有一个球是黑球B摸出的三个球中至少有一个球是白球C摸出的三个球中至少有两个球是黑球D摸出的三个球中至少有两个球是白球6如图,两根竹竿和都斜靠在墙上,测得,则两竹竿的长度之比等

3、于( )ABCD7已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且EAF=45,EC=1,将ADE绕点A沿顺时针方向旋转90后与ABG重合,连接EF,过点B作BMAG,交AF于点M,则以下结论:DE+BF=EF,BF=,AF=,SMEF=中正确的是ABCD8把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为( )A9B12C-14D109如图,AB为O的直径,CD为O上的两个点(CD两点分别在直径AB的两侧),连接BD,AD,AC,CD,若BAD=56,则C的度数为()A56B55C35D341

4、0下列方程中,是一元二次方程的是( )ABCD11若抛物线y=x2-2x-1与x轴的一个交点坐标为(m,0),则代数式2m2-4m+2017的值为( )A2019B2018C2017D201512函数y=-x2-3的图象顶点是( )ABCD二、填空题(每题4分,共24分)13如图,AB是O的直径,AC是O的切线,OC交O于点D,若C=40,OA=9,则BD的长为 (结果保留)14如图,在直角三角形中,是边上一点,以为边,在上方作等腰直角三角形,使得,连接.若,则的最小值是_.15如图,在四边形ABCD中,BADBCD90,AB+AD8cm当BD取得最小值时,AC的最大值为_cm16一艘观光游船

5、从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援,海警船到达事故船处所需的时间大约为_小时(用根号表示)17如图,在平面直角坐标系中,等腰RtOA1B1的斜边OA12,且OA1在x轴的正半轴上,点B1落在第一象限内将RtOA1B1绕原点O逆时针旋转45,得到RtOA2B2,再将RtOA2B2绕原点O逆时针旋转45,又得到RtOA3B3,依此规律继续旋转,得到RtOA2019B2019,则点B2019的坐标为_18二次函数y4(x3)2+7的图象的顶点坐标是_三、

6、解答题(共78分)19(8分)已知:如图,在ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论20(8分)如图,已知抛物线(a0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C,且OC=OB(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90后,点A的对应点A恰好也落在此抛物线上,求点P的坐标

7、21(8分)数学概念若点在的内部,且、和中有两个角相等,则称是的“等角点”,特别地,若这三个角都相等,则称是的“强等角点”.理解概念(1)若点是的等角点,且,则的度数是 .(2)已知点在的外部,且与点在的异侧,并满足,作的外接圆,连接,交圆于点.当的边满足下面的条件时,求证:是的等角点.(要求:只选择其中一道题进行证明!)如图,如图,深入思考(3)如图,在中,、均小于,用直尺和圆规作它的强等角点.(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:直角三角形的内心是它的等角点;等腰三角形的内心和外心都是它的等角点;正三角形的中心是它的强等角点;若一个三角形存在强等角点,则该

8、点到三角形三个顶点的距离相等;若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)22(10分)学校为了解九年级学生对“八礼四仪”的掌握情况,对该年级的500名同学进行问卷测试,并随机抽取了10名同学的问卷,统计成绩如下:得分109876人数33211(1)计算这10名同学这次测试的平均得分; (2)如果得分不少于9分的定义为“优秀”,估计这 500名学生对“八礼四仪”掌握情况优秀的人数; (3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?23(

9、10分)如图,在88的正方形网格中,AOB的顶点都在格点上请在网格中画出OAB的一个位似图形,使两个图形以点O为位似中心,且所画图形与OAB的位似为2:124(10分)如图,在RtABC中,C90,矩形DEFG的顶点G、F分别在边AC、BC上,D、E在边AB上(1)求证:ADGFEB;(2)若AD2GD,则ADG面积与BEF面积的比为 25(12分)如图,一次函数yx+4的图象与反比例函数y(k为常数且k0)的图象交于A(1,3),B(b,1)两点(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,并求满足条件的点P的坐标;(3)连接OA,OB,求OAB的面积26如图,在

10、ABC中,AD是BC边上的高,tanBcosDAC(1)求证:ACBD;(2)若sin C,BC12,求ABC的面积参考答案一、选择题(每题4分,共48分)1、D【分析】根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0,对各选项分析判断后利用排除法求解【详解】解:A. 不是一元二次方程;B. 不是一元二次方程;C. 整理后可知不是一元二次方程; D. 整理后是一元二次方程;故选:D.【点睛】本题利用了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a0)2、D【解析】分析:根据从左边看得到的图

11、形是左视图,可得答案详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图3、C【分析】由题意根据平行四边形的性质得到ABC=AOC,根据圆内接四边形的性质、圆周角定理列式计算即可【详解】解:四边形ABCO是平行四边形,ABC=AOC,四边形ABCD内接于O,ABC+ADC=180,由圆周角定理得,ADC= AOC,ADC=60,故选:C【点睛】本题考查的是圆内接四边形的性质、圆周角定理以及平行四边形的性质,掌握圆内接四边形的对角互补是解题的关键4、A【详解】点P1(1,y1)和P2(2,y2)

12、在反比例函数的图象上,y1=1,y2=,y1y21故选A5、A【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误故选A6、D【分析】在两个直角三角形中,分别求出AB、AD即可解决问题【详解】根据题意:在RtABC中,则,在RtACD中,则,故选:D【点睛】本题考查了解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题7、D【分析】利用全等三角形的性质条件勾股定理求出的长,再利用相似三角形的性质求出BMF的面积即可【详解】解: AG=AE, FA

13、E=FAG=45,AF=AF,AFE AFG,EF=FGDE=BGEF=FG=BG+FB=DE+BF故正确BC=CD=AD=4,EC=1DE=3,设BF=x,则EF=x+3,CF=4-x,在RtECF中,(x+3)2=(4-x)2+12解得x= BF= ,AF= 故正确,错误,BMAGFBMFGA SMEF=,故正确,故选D【点睛】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题8、B【解析】y=x2-2x+3=(x-1)2+2,将其向上平移2个单位得:y= (x-1)2+2

14、+2= (x-1)2+4,再向左平移3个单位得:y= (x-1+3)2+4= (x-1+3 )2+4= (x+2)2+4=x2+4x+8,所以b=4,c=8,所以b+c=12,故选B.9、D【分析】利用直径所对的圆周角是可求得的度数,根据同弧所对的的圆周角相等可得C的度数.【详解】解:AB为O的直径,点D为O上的一个点 故选:D【点睛】本题考查了圆周角的性质,熟练掌握圆周角的相关性质是解题的关键.10、A【分析】根据一元二次方程的定义进行判断【详解】A、符合题意;B、是一元一次方程,不符合题意;C、是二元一次方程,不符合题意;D、是分式方程,不符合题意;故选A【点睛】本题考查一元二次方程的定义

15、,熟练掌握一元二次方程的定义是解题的关键11、A【分析】将代入抛物线的解析式中,可得,变形为然后代入原式即可求出答案【详解】将代入,变形得:,故选:A【点睛】本题考查抛物线的与轴的交点,解题的关键是根据题意得出,本题属于基础题型12、C【解析】函数y=-x2-3的图象顶点坐标是(0,-3).故选C.二、填空题(每题4分,共24分)13、132,【解析】试题解析:AC是O的切线,OAC=90,C=40,AOD=50,AD的长为509180=52,BD的长为9-52=132,考点:1.切线的性质;2.弧长的计算14、【分析】过点E作EH直线AC于点H,利用AAS定理证明BCDDEH,设CD=x,利

16、用勾股定理求,然后利用配方法求其最小值,从而使问题得解.【详解】解:过点E作EH直线AC于点H, 由题意可知:EDA+BDC=90,BDC+DBC=90EDA=DBC又C=EHD,BD=DEBCDDEHHD=BC=4设CD=x,则EH=xAH= 在RtAEH中, 当x=时,有最小值为AE的最小值为故答案为:【点睛】本题考查全等三角形的判定,勾股定理及二次函数求最值,综合性较强,正确添加辅助线是本题的解题关键.15、【分析】设ABx,则AD8x,由勾股定理可得BD2x2+(8x)2,由二次函数的性质可求出ABAD4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上则AC为直径时

17、最长,则最大值为4【详解】解:设ABx,则AD8x,BADBCD90,BD2x2+(8x)22(x4)2+1当x4时,BD取得最小值为4A,B,C,D四点在以BD为直径的圆上如图,AC为直径时取得最大值AC的最大值为4故答案为:4【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键16、【分析】过点C作CDAB交AB延长线于D先解RtACD得出CD=AC=40海里,再解RtCBD中,得出BC=(海里),然后根据时间=路程速度即可求出海警船到大事故船C处所需的时间【详解】解:如图,过点C作CDAB交AB延长线于D在RtACD中,ADC=90,CAD=30,AC=60

18、海里,CD=AC=30海里在RtCBD中,CDB=90,CBD=90-37=53,BC=(海里),海警船到大事故船C处所需的时间大约为:2040=(小时)故答案为【点睛】本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键17、(1,1)【分析】观察图象可知,点B1旋转8次为一个循环,利用这个规律解决问题即可【详解】解:观察图象可知,点B1旋转8次一个循环,20188252余数为2,点B2019的坐标与B3(1,1)相同,点B2019的坐标为(1,1)故答案为(1,1)【点睛】本题考查坐标与图形的变化旋转,规律型问题,解题的关键是学会探究规律的方法,属于中考

19、常考题型18、(3,7)【分析】由抛物线解析式可求得答案【详解】y=4(x3)2+7,顶点坐标为(3,7),故答案为(3,7)三、解答题(共78分)19、(1)见详解;(2)四边形ADCF是矩形;证明见详解【分析】(1)可证AFEDBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论;(2)若AB=AC,则ABC是等腰三角形,根据等腰三角形三线合一的性质知ADBC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又ADBC,则四边形ADCF是矩形【详解】(1)证明:E是AD的中点,AE=DEAFBC,FAE=BDE,AFE=DBE在AFE和DBE中,AFEDBE(AAS)AF

20、=BDAF=DC,BD=DC即:D是BC的中点(2)解:四边形ADCF是矩形;证明:AF=DC,AFDC,四边形ADCF是平行四边形AB=AC,BD=DC,ADBC即ADC=90平行四边形ADCF是矩形【点睛】此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用解题的关键是熟练掌握矩形的判定方法,以及全等三角形的判定和性质进行证明20、(1)y=-x2-2x+3(2)(-,)(3)满足条件的点P的坐标为P(-1,1)或(-1,-2)【详解】(1)抛物线()与x轴交于点A(1,0)和点B(3,0),OB=3,OC=OB,OC=3,c=3,解得:,所求抛物线

21、解析式为:;(2)如图2,过点E作EFx轴于点F,设E(a,)(3a0),EF=,BF=a+3,OF=a,S四边形BOCE=BFEF+(OC+EF)OF=,当a=时,S四边形BOCE最大,且最大值为此时,点E坐标为(,);(3)抛物线的对称轴为x=1,点P在抛物线的对称轴上,设P(1,m),线段PA绕点P逆时针旋转90后,点A的对应点A恰好也落在此抛物线上,如图,PA=PA,APA=90,如图3,过A作AN对称轴于N,设对称轴与x轴交于点M,NPA+MPA=NAP+NPA=90,NAP=MPA,在ANP与APM中,ANP=AMP=90,NAP=MPA,PA=AP,ANPPMA,AN=PM=|m

22、|,PN=AM=2,A(m1,m+2),代入得:,解得:m=1,m=2,P(1,1),(1,2)考点:1二次函数综合题;2二次函数的最值;3最值问题;4旋转的性质;5综合题;6压轴题21、(1)100、130或1;(2)选择或,理由见解析;(3)见解析;(4)【分析】(1)根据“等角点”的定义,分类讨论即可;(2)根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可【详解】(1)(i)若=时,=

23、100(ii)若时,(360)=130;(iii)若=时,360=1,综上所述:=100、130或1故答案为:100、130或1(2)选择:连接,是的等角点选择连接四边形是圆的内接四边形,是的等角点(3)作BC的中垂线MN,以C为圆心,BC的长为半径作弧交MN与点D,连接BD,根据垂直平分线的性质和作图方法可得:BD=CD=BCBCD为等边三角形BDC=BCD=DBC=60作CD的垂直平分线交MN于点O以O为圆心OB为半径作圆,交AD于点Q,圆O即为BCD的外接圆BQC=180BDC=120BD=CDBQD=CQDBQA=CQA=(360BQC)=120BQA=CQA=BQC如图,点即为所求(

24、4)如下图所示,在RtABC中,ABC=90,O为ABC的内心假设BAC=60,ACB=30点O是ABC的内心BAO=CAO=BAC=30,ABO=CBO=ABC=45,ACO=BCO=ACB=15AOC=180CAOACO=135,AOB=180BAOABO=105,BOC=180CBOBCO=120显然AOCAOBBOC,故错误;对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故错误;正三角形的每个中心角都为:3603=120,满足强等角点的定义,所以正三角形的中心是它的强等角点,故正确;由(3)可知,点Q为ABC的强等角,但Q不在BC的中垂线上,故QBQC,故错误;由(3

25、)可知,当的三个内角都小于时,必存在强等角点如图,在三个内角都小于的内任取一点,连接、,将绕点逆时针旋转到,连接,由旋转得,是等边三角形、是定点,当、四点共线时,最小,即最小而当为的强等角点时,此时便能保证、四点共线,进而使最小故答案为:【点睛】此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键22、(1)8.6;(2)300;(3)不同意,理由见解析.【分析】(1)根据加权平均数的计算公式求平均数;(2)根据表中数据求出这10名同学中优秀所占的比

26、例,然后再求500名学生中对“八礼四仪”掌握情况优秀的人数;(3)根据平均数和中位数的意义进行分析说明即可.【详解】解:(1) 这10名同学这次测试的平均得分为8.6分;(2)(人)这 500名学生对“八礼四仪”掌握情况优秀的人数为300人;(3)不同意平均数容易受极端值的影响,所以小明的测试成绩为8分,并不一定代表他的成绩在班级中等偏上,要想知道自己的成绩是否处于中等偏上,需要了解班内学生成绩的中位数.【点睛】本题考查加权平均数的计算,用样本估计总体以及平均数及中位数的意义,了解相关概念准确计算是本题的解题关键.23、答案见解析【分析】延长AO,BO,根据相似比,在延长线上分别截取AO,BO的2倍,确定所作的位似图形的关键点A,B,再顺次连接所作各点,即可得到放大2倍的位似图形ABC【详解】解:如图【点睛】本题考查作图-位似变换,数形结合思想解题是关键24、(1)证明见解析;(2)4.【分析】(1)易证AGD=B,根据ADG=BEF=90,即可证明ADGFEB;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论