版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒设平均每次降价的百分率为x,根据题意所列方程正确的是()A36(1x)23625B36(12x)25C36(1x)225D36(1x2)252将化成的形式为( )ABCD3
2、如图,在56的方格纸中,画有格点EFG,下列选项中的格点,与E,G两点构成的三角形中和EFG相似的是( )A点AB点BC点CD点D4九章算术中有一题“今有勾八步,股十五步,问勾中容圆径几何? ”其意思是:“今有直角三角形,勾(短直角边)长为步,股(长直角边)长为步,问该直角三角形能容纳的圆形(内切圆)直径是( ) A步B步C步D步5已知=3,则代数式的值是()ABCD6如图,在正方形网格中,已知的三个顶点均在格点上,则的正切值为( )ABCD7两直线a、b对应的函数关系式分别为y=2x和y=2x+3,关于这两直线的位置关系下列说法正确的是A直线a向左平移2个单位得到bB直线b向上平移3个单位得
3、到aC直线a向左平移个单位得到bD直线a无法平移得到直线b8已知函数的图像上两点,其中,则与的大小关系为( )ABCD无法判断9在平面直角坐标系xoy中,OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将OAB放大,若B点的对应点B的坐标为(6,0),则A点的对应点A坐标为()A(2,4)B(4,2)C(1,4)D(1,4)10下列四个数中,最小数的是()A0B1CD二、填空题(每小题3分,共24分)11一个等腰三角形的两条边长分别是方程x27x+100的两根,则该等腰三角形的周长是_12如图,是的中位线,是边上的中线,交于点,下列结论:;:
4、,其中正确的是_(只填序号)13若代数式5x5与2x9的值互为相反数,则x_.14如图所示,某河堤的横断面是梯形,迎水坡长26米,且斜坡的坡度为,则河堤的高为 米15在ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则是_16如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则cos_17若,则_18如图,如果将半径为的圆形纸片剪去一个圆心角为的扇形,用剩下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面圆半径为_三、解答题(共66分)19(10分)如图,己知是的直径,切于点,过点作于点,交于点,连接、.(1)求证:是的切
5、线:(2)若,求阴影部分面积. 20(6分)已知菱形的两条对角线长度之和为40厘米,面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化(1)请直接写出S与x之间的函数关系式,并写出自变量x的取值范围(2)当x取何值时,菱形的面积最大,最大面积是多少?21(6分)等腰中,作的外接圆O.(1)如图1,点为上一点(不与A、B重合),连接AD、CD、AO,记与的交点为.设,若,请用含与的式子表示;当时,若,求的长;(2)如图2,点为上一点(不与B、C重合),当BC=AB,AP=8时,设,求为何值时,有最大值?并请直接写出此时O的半径22(8分)在一个不透明的口袋中装有3张相同的纸牌
6、,它们分别标有数字3,1,2,随机摸出一张纸牌不放回,记录其标有的数字为x,再随机摸取一张纸牌,记录其标有的数字为y,这样就确定点P的一个坐标为(x,y)(1)用列表或画树状图的方法写出点P的所有可能坐标;(2)写出点P落在双曲线上的概率23(8分)如图,一次函数yx+5的图象与坐标轴交于A,B两点,与反比例函数y的图象交于M,N两点,过点M作MCy轴于点C,且CM1,过点N作NDx轴于点D,且DN1已知点P是x轴(除原点O外)上一点(1)直接写出M、N的坐标及k的值;(2)将线段CP绕点P按顺时针或逆时针旋转90得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q
7、的坐标;如果不能,请说明理由;(3)当点P滑动时,是否存在反比例函数图象(第一象限的一支)上的点S,使得以P、S、M、N四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S的坐标;若不存在,请说明理由24(8分)如图,在中,以为直径的交于点,连接,.(1)求证:是的切线;(2)若,求点到的距离.25(10分)小明本学期4次数学考试成绩如下表如示:成绩类别第一次月考第二次月考期中期末成绩分138142140138(1)小明4次考试成绩的中位数为_分,众数为_分;(2)学校规定:两次月考的平均成绩作为平时成绩,求小明本学期的平时成绩;(3)如果本学期的总评成绩按照平时成绩占20%、期
8、中成绩占30%、期末成绩占50%计算,那么小明本学期的数学总评成绩是多少分?26(10分)如图,是的直径,点,是上两点,且,连接,过点作交延长线于点,垂足为(1)求证:是的切线;(2)若,求的半径参考答案一、选择题(每小题3分,共30分)1、C【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格(1降低的百分率)1,把相应数值代入即可求解【详解】解:第一次降价后的价格为36(1x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36(1x)(1x),则列出的方程是36(1x)21故选:C【点睛】考查由实际问题抽象出一元二次方程中求平均变化率的方法若设变化前的量为a,变化后的量
9、为b,平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b2、C【分析】本小题先将二次项的系数提出后再将括号里运用配方法配成完全平方式即可【详解】由得:故选【点睛】本题考查的知识点是配方法,掌握配方的方法及防止漏乘是关键3、D【分析】根据网格图形可得所给EFG是两直角边分别为1,2的直角三角形,然后利用相似三角形的判定方法选择答案即可【详解】解:观察图形可得EFG中,直角边的比为,观各选项,只有D选项三角形符合,与所给图形的三角形相似故选:D【点睛】本题考查了相似三角形的判定,勾股定理的应用,熟练掌握网格结构,观察出所给图形的直角三角形的特点是解题的关键4、A【分析】根据勾股定理求出直
10、角三角形的斜边,即可确定出内切圆半径,进而得出直径.【详解】根据勾股定理,得斜边为,则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故答案为A.【点睛】此题主要考查了三角形的内切圆与内心,熟练掌握,即可解题.5、D【分析】由得出,即,整体代入原式,计算可得.【详解】 , , ,则原式.故选:.【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.6、D【分析】延长交网格于,连接,得直角三角形ACD,由勾股定理得出、,由三角函数定义即可得出答案【详解】解:延长交网格于,连接,如图所示:则,的正切值;故选:D【点睛】本题考查了解直角三角形以及勾股定理
11、的运用;熟练掌握勾股定理,构造直角三角形是解题的关键7、C【分析】根据上加下减、左加右减的变换规律解答即可【详解】A. 直线a向左平移2个单位得到y=2x+4,故A不正确;B. 直线b向上平移3个单位得到y=2x+5,故B不正确;C. 直线a向左平移个单位得到=2x+3,故C正确,D不正确.故选C【点睛】此题考查一次函数与几何变换问题,关键是根据上加下减、左加右减的变换规律分析8、B【分析】由二次函数可知,此函数的对称轴为x2,二次项系数a10,故此函数的图象开口向下,有最大值;函数图象上的点与坐标轴越接近,则函数值越大,故可求解【详解】函数的对称轴为x2,二次函数开口向下,有最大值,A到对称
12、轴x2的距离比B点到对称轴的距离远,故选:B【点睛】本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数yax2bxc(a0)的图象性质9、A【分析】根据相似比为2, B的坐标为(6,0),判断A在第三象限即可解题.【详解】解:由题可知O A:OA=2:1,B的坐标为(6,0),A在第三象限,A(2,4),故选A.【点睛】本题考查了图形的位似,属于简单题,确定A的象限是解题关键.10、B【分析】先根据有理数的大小比较法则比较数的大小,再得出答案即可【详解】解:,最小的数是1,故选:B【点睛】本题考查了有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负
13、数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小二、填空题(每小题3分,共24分)11、1【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x27x+100(x2)(x5)0,解得:x12,x25,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+21故答案为:1【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质.12、【分析】由是的中位线可得DEBC、,即可利用相似三角形的性质进行判断即可.【详解】是的中位线DEBC、,故正确;DEBC,故正确;DEBC是边上的中线,故错误;综上正确
14、的是;故答案是【点睛】本题考查三角形的中位线、相似三角形的性质和判定,解题的关键是利用三角形的中位线得到平行线.13、2【解析】由5x5的值与2x9的值互为相反数可知:5x52x90,解此方程即可求得答案.【详解】由题意可得:5x52x90,移项,得7x14,系数化为1,得x2.【点睛】本题考查了相反数的性质以及一元一次方程的解法.14、24【解析】试题分析:因为斜坡的坡度为,所以BE:AE=,设BE=12x,则AE=5x;在RtABE中,由勾股定理知:即:解得:x=2或-2(负值舍去);所以BE=12x=24(米)考点:解直角三角形的应用15、或【分析】分两种情况,根据相似三角形的性质计算即
15、可【详解】解:当时,四边形ABCD是平行四边形,当时,同理可得,故答案为或【点睛】考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键16、【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求cos的值【详解】小正方形面积为49,大正方形面积为169, 小正方形的边长是7,大正方形的边长是13,在RtABC中,AC2BC2AB2,即AC2(7AC)2132,整理得,AC27AC600,解得AC5,AC12(舍去),BC12,cos=故填:.【点睛】本题考查了勾股定理的证明,锐角三角形函数的定义,利用
16、勾股定理列式求出直角三角形的较短的直角边是解题的关键17、【解析】=.18、cm【分析】设这个圆锥的底面圆半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到,然后解方程即可【详解】解:设这个圆锥的底面圆半径为rcm,根据题意得解得:,即这个圆锥的底面圆半径为cm故答案为:cm【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长三、解答题(共66分)19、(1)证明见解析;(2)【分析】(1)连结,由半径相等得到OBC=OCB,由垂径定理可知是的垂直平分线,得到PB=PC,因此PBC=PCB,
17、从而可以得到PCO=90,即可得证;(2)阴影部分的面积即为扇形OAC的面积减去OAC的面积,通过,利用扇形面积公式和三角形计算公式计算即可.【详解】(1)证明:连结,如图又为圆的直径,切圆于点,又是的垂直平分线,即是圆的切线(2)由(1)知、为圆的切线,又为圆的直径,【点睛】本题考查了切线的判定和扇形面积公式的应用,理解弓形面积为扇形面积与三角形面积之差是解题的关键.20、(1)Sx2+20 x,0 x40;(2)当x20时,菱形的面积最大,最大面积是1【分析】(1)直接利用菱形面积公式得出S与x之间的关系式;(2)利用配方法求出最值即可【详解】(1)由题意可得:,x为对角线的长,x0,40
18、 x0,即0 x40;(2),即当x20时,菱形的面积最大,最大面积是1【点睛】本题考查二次函数的应用,熟练掌握菱形的性质,建立二次函数模型是解题的关键21、(1);(2)PB=5时,S有最大值,此时O的半径是.【分析】(1)连接BO、CO,利用SSS可证明ABOACO,可得BAO=CAO=y,利用等腰三角形的性质及三角形内角和定理可用y表示出ABC,由圆周角定理可得DCB=DAB=x,根据即可得答案;过点作于点,根据垂径定理可得AF的长,利用勾股定理可求出OF的长,由(1)可得,由ABCD可得n=90,即可证明y=x,根据ABCD,OFAC可证明AEDAFO,设DE=a,根据相似三角形的性质
19、可,由D=B,AED=CEB=90可证明AEDCEB,设,根据相似三角形的性质可得,根据线段的和差关系和勾股定理列方程组可求出a、b的值,根据AEDAFO即可求出AD的值;(2)延长到,使得,过点B作BDAP于D,BECP,交CP延长线于E,连接OA,作OFAB于F,根据BC=AB可得三角形ABC是等边三角形,根据圆周角定理可得APM=60,即可证明APM是等边三角形,利用角的和差关系可得BAP=CAM,利用SAS可证明BAPCPM,可得BP=CM,即可得出PB+PC=AP,设,则,利用APB和BPE的正弦可用x表示出BD、BE的长,根据可得S与x的关系式,根据二次函数的性质即可求出S取最大值
20、时x的值,利用BPA的余弦及勾股定理可求出AB的长,根据等边三角形的性质及垂径定理求出OA的长即可得答案.【详解】(1)连接BO,CO,且为公共边,.过点作于点,AEDAFO,=,即,设,则,AEDCEB,即设,则,解得:或,a0,b0,即DE=,AEDAFO,AD=3=.(2)延长到,使得,过点B作BDAP于D,BECP,交CP延长线于E,连接OA,作OFAB于F,BC=AB,AB=AC,是等边三角形,是等边三角形,BAP+PAC=CAM+PAC=60,在BAP和CAM中,设,则,APB=ACB=60,APM=60,BPE=60,BE=PBsin60=,PD=PBsin60=,S=PCBE+
21、APBD=,当时,即PB=5时,S有最大值,BD=,PD=PBcos60=,AD=AP-PD=,AB=7,ABC是等边三角形,O为ABC的外接圆圆心,OAF=30,AF=AB=,OA=.此时的半径是.【点睛】本题考查圆周角定理、相似三角形的判定与性质、垂径定理、等边三角形的判定与性质、求二次函数的最值及解直角三角形,综合性比较强,熟练掌握相关的性质及定理是解题关键.22、(1)(-1,3) (2,3) (3,-1) (2,-1) (3,2) (-1,2),表格见解析;(2)【分析】(1)首先根据题意列出表格,由表格即可求得所有等可能的结果;(2)由(1)可求得所确定的点P落在双曲线y上的情况,
22、然后利用概率公式求解即可求得答案【详解】(1)列表得:则可能出现的结果共有6个,为(-1,3) (2,3) (3,-1) (2,-1) (3,2) (-1,2),它们出现的可能性相等;(2)满足点P(x,y)落在双曲线y上的结果有2个,为(3,1),(1,3),点P落在双曲线上的概率【点睛】此题考查的是用列表法或树状图法求概率注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比23、(1)M(1,4),N(4,1),k4;(2)(2+2,2+2)或(22,22)或(2,2);(3)(,5
23、)或(,3)【分析】(1)利用待定系数法即可解决问题;(2)分三种情形求解:如图2,点P在x轴的正半轴上时,绕P顺时针旋转到点Q,根据COPPHQ,得COPH,OPQH,设P(x,0),表示Q(x+4,x),代入反比例函数的关系式中可得Q的两个坐标;如图3,点P在x轴的负半轴上时;如图4,点P在x轴的正半轴上时,绕P逆时针旋转到点Q,同理可得结论(3)分两种情形分别求解即可;【详解】解:(1)由题意M(1,4),n(4,1),点M在y上,k4;(2)当点P滑动时,点Q能在反比例函数的图象上;如图1,CPPQ,CPQ90,过Q作QHx轴于H,易得:COPPHQ,COPH,OPQH,由(2)知:反
24、比例函数的解析式:y;当x1时,y4,M(1,4),OCPH4设P(x,0),Q(x+4,x),当点Q落在反比例函数的图象上时,x(x+4)4,x2+4x+48,x2,当x2时,x+42+,如图1,Q(2+2,2+2);当x22时,x+422,如图2,Q(22,22);如图3,CPPQ,CPQ90,设P(x,0)过P作GHy轴,过C作CGGH,过Q作QHGH,易得:CPGPQH,PGQH4,CGPHx,Q(x4,x),同理得:x(x4)4,解得:x1x22,Q(2,2),综上所述,点Q的坐标为(2+2,2+2)或(22,22)或(2,2)(3)当MN为平行四边形的对角线时,根据MN的中点的纵坐
25、标为,可得点S的纵坐标为5,即S(,5);当MN为平行四边形的边时,易知点S的纵坐标为3,即S(,3);综上所述,满足条件的点S的坐标为(,5)或(,3)【点睛】本题是一道关于一次函数和反比例函数相结合的综合题目,题目中涉及到了旋转及动点问题,主要是通过作辅助线利用三角形全等来解决,充分考查了学生综合分析问题的能力.24、(1)见解析;(2)【分析】(1)由是的直径可得,然后利用直角三角形的性质和角的等量代换可得,进而可得结论;(2)易证,于是可利用相似三角形的性质求出AB的长,进而可得AD的长,过作于,则,于是OHCADC,然后再利用相似三角形的性质可求得OH的长,问题即得解决.【详解】(1)证明:是的直径,即,是的切线;(2)解:,解得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度产品代理合同(含代理区域与销售目标)
- 2024年度版权许可使用合同履约保证金规定
- 2024年度城市道路照明设施安装合同
- 2024年度物流服务外包合同(含冷链)
- 04版城市基础设施建设项目合同
- 身份鉴别用安全编码卡项目评价分析报告
- 2024年度商业物业租赁与管理合同
- 2024年度展览展示合同
- 贴纸书市场需求与消费特点分析
- 2024年度担保合同
- 生产准备三查四定检查表
- 初三【语文(统编)】《范进中举》中人物丑态的表现课件
- 物业管理风险管控
- 电泳-厚-度-检-测-记录
- 治安巡防大队绩效考评细则
- (中职) 电子商务基础(第二版)教案
- 沪教版初中语文目录(六到九年级)
- 人教版数学三年级上册《分数的初步认识》课件 (共7张PPT)
- 广告知多少?课件
- 北京颂歌原版五线谱钢琴谱正谱乐谱
- 2021小学语文《习作例文-风向袋的制作》说课稿及教学反思
评论
0/150
提交评论