版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学试题 第 PAGE51 页 (共NUMPAGES51页)秘密启用前荆门市2019年初中学业水平考试数 学本试卷共6页,24题。全卷满分120分。考试用时120分钟。祝考试顺利注意事项:1答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上的对应题目的答案标号涂黑。写在试卷、草稿纸和答题卡上的非答题区域均无效。3非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效。4考试结束后,请将本试卷和答题卡一并上交。一、选择题:本题共12小题,每小题
2、3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的。1的倒数的平方是A2BCD2已知一天有86400秒,一年按365天计算共有31536000秒.用科学计数法表示31536000正确的是ABCD3已知实数x,y满足方程组则的值为ABCD4将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则的度数是ABCD5抛物线与坐标轴的交点个数为A0B1C2 D36不等式组的解集为ABCD7投掷一枚质地均匀的骰子两次,向上一面的点数依次记为.那么方程有解的概率是ABCD8欣欣服装店某天用相同的价格卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的
3、盈利情况是A盈利B亏损C不盈不亏D与售价有关9如果函数(是常数)的图象不经过第二象限,那么应满足的条件是A且B且C且D且10如图,的斜边在轴上,含角的顶点与原点重合,直角顶点在第二象限,将绕原点顺时针旋转后得到,则点的对应点的坐标是ABCD11下列运算不正确的是ABCD12如图,内心为,连接并延长交的外接圆于,则线段与的关系是ABCD不确定二、填空题:本题共5小题,每小题3分,共15分。13计算 .14已知是关于的方程的两个不相等实数根,且满足,则的值为 .15如图,在平面直角坐标系中,函数的图象与等边三角形的边,分别交于点,,且,若,那么点的横坐标为 .16如图,等边三角形的边长为2,以为圆
4、心,1为半径作圆分别交边于,再以点为圆心,长为半径作圆交边于,连接,那么图中阴影部分的面积为 .17抛物线(为常数)的顶点为,且抛物线经过点,,.下列结论:, , 时,存在点使为直角三角形.其中正确结论的序号为 .三、解答题:共69分。解答应写出文字说明、证明过程或演算步骤。18(8分)先化简,再求值:,其中.19.(9分)如图,已知平行四边形中,.(1)求平行四边形的面积;(2)求证:.20.(10分)高尔基说:“书,是人类进步的阶梯.”阅读可以丰富知识、拓展视野、充实生活等诸多益处.为了解学生的课外阅读情况,某校随机抽查了部分学生阅读课外书册数的情况,并绘制出如下统计图.其中条形统计图因为
5、破损丢失了阅读5册书数的数据.(1)求条形图中丢失的数据,并写出阅读书册数的众数和中位数;(2)根据随机抽查的这个结果,请估计该校1200名学生中课外阅读5册书的学生人数;(3)若学校又补查了部分同学的课外阅读情况,得知这部分同学中课外阅读最少的是6册,将补查的情况与之前的数据合并后发现中位数并没有改变,试求最多补查了多少人?21.(10分)已知锐角的外接圆圆心为,半径为.(1)求证:;(2)若中,求的长及的值.22.(10分)如图,为了测量一栋楼的高度,小明同学先在操场上处放一面镜子,向后退到处,恰好在镜子中看到楼的顶部;再将镜子放到处,然后后退到处,恰好再次在镜子中看到楼的顶部(在同一条直
6、线上).测得,如果小明眼睛距地面高度为,试确定楼的高度.23.(10分)为落实“精准扶贫”精神,市农科院专家指导李大爷利用坡前空地种植优质草莓.根据市场调查,在草莓上市销售的30天中,其销售价格(元/公斤)与第天之间满足 (为正整数),销售量(公斤)与第天之间的函数关系如图所示:如果李大爷的草莓在上市销售期间每天的维护费用为80元.(1)求销售量与第天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润与第天之间的函数关系式;(日销售利润=日销售额-日维护费)(3)求日销售利润的最大值及相应的.24.(12分)已知抛物线顶点,经过点,且与直线交于两点.(1)求抛物线的解析式;(2
7、)若在抛物线上恰好存在三点,满足,求的值;(3)在之间的抛物线弧上是否存在点满足?若存在,求点的横坐标,若不存在,请说明理由.(坐标平面内两点之间的距离)荆门市2019年初中学业水平考试数学试题参考答案一、选择题1.B 2.B 3.A 4.C 5.C 6.C 7.D 8.B 9.A 10.A 11.B 12.A 二、填空题13.14.115.16.17.三、解答题18.解:原式=, ,原式. 19.解:(1)作,交的延长线于,设,在中:在中:联立解得:, 平行四边形的面积为; (2)如图:作,垂足为,在中:,又,. 20.解:(1)设阅读5册书的人数为,由统计图可知:,;阅读书册数的众数是5,
8、中位数是5; (2)阅读5册书的学生人数频率为该校阅读5册书的学生人数约为(人);(3)设补查人数为,依题意:,最多补查了3人. 21.解:(1)连接并延长交圆于点,连接,为直径, ,且,在中:,; (2)由(1)知,同理可得, 如图,作,垂足为,,,. 22.解:设关于点的对称点为,由光的反射定律知,延长相交于, 连接并延长交于,即, .答:楼的高度为32米.23.解:(1)当时,设,由图可知:,解得, 同理当时,; (2),即; 当时,的对称轴是,的最大值是, 当时,的对称轴是,的最大值是, 当时,的对称轴是,的最大值是, 综上,草莓销售第天时,日销售利润最大,最大值是元. 24.解:(1
9、)依题意,将点代入得:,函数的解析式为; 作直线的平行线,当与抛物线有两个交点时,由对称性可知:位于直线两侧且与等距离时,会有四个点符合题意,因为当位于直线上方时,与抛物线总有两个交点满足,所以只有当位于直线下方且与抛物线只有一个交点时符合题意,此时面积最大; 设,作轴交于,那么当时面积最大,最大面积为,;(3)若存在点满足条件,设,,即, 设,代入上式得:,即,即,,或(舍去),代入得:,综上所述,存在点满足条件,点的横坐标为.初中数学重要公式1、几何计数:(1)当一条直线上有n个点时,在这条直线上存在_ _ 条线段(2)平面内有n个点,过两点确定一条直线,在这个平面内最多存在_ _条直线(
10、3)如果平面内有n条直线,最多存在_ _个交点(4)如果平面内有n条直线,最多可以将平面分成_ _部分(5)、有公共端点的n条射线(两条射线的最大夹角小于平角),则存在_ _个角2、ABCD,分别探讨下面四个图形中APC与PAB、PCD的关系。3、全等三角形的判定方法:a三条边对应相等的两个三角形全等(简记为_)b两个角和它们的夹边对应相等的两个三角形全等(简记为_)c两个角和其中一个角的对边对应相等的两个三角形全等(简记为_)d两条边和它们的夹角对应相等的两个三角形全等(简记为_)e斜边和一条直角边对应相等的两个直角三角形全等(简记为_)4、坐标系中的位似变换:在平面直角坐标系中,如果位似变
11、换是以原点为位似中心,位似比为k,那么位似图形对应点的坐标的比等于_5、n边形的内角和等于_;多边形的外角和都等于_6、在四边形的四个内角中,最多能有_3_个钝角,最多能有_3_个锐角如果一个多边形的边数增加1,那么这个多边形的内角和增加_180_度4n边形有_条对角线5、用_、_完全相同的一种或几种_进行拼接,彼此之间不留空隙,不重叠的铺成一片,就是平面图形的_. 注意 要实现平面图形的镶嵌,必须保证每个拼接点处的角恰好能拼成_.总结 平面图形的镶嵌的常见形式(1)用同一种正多边形可以镶嵌的只有三种情况:_个正三角形或_个正四边形或_个正六边形(2)用两种正多边形镶嵌用正三角形和正四边形镶嵌
12、:_个正三角形和_个正四边形;用正三角形和正六边形镶嵌:用_个正三角形和_个正六边形或者用_个正三角形和_个正六边形;用正四边形和正八边形镶嵌:用_个正四边形和_个正八边形可以镶嵌(3)用三种不同的正多边形镶嵌用正三角形、正四边形和正六边形进行镶嵌,设用m块正三角形、n块正方形、k块正六边形,则有60m90n120k360,整理得_,因为m、n、k为整数,所以m_,n_,k_,即用_块正方形,_块正三角形和_块正六边形可以镶嵌6、梯形常用辅助线做法:7、如图:RtABC中,ACB90o,CDAB于D,则有:(1)、ACDB DCBA(2) 由RtABC RtACD得到由RtABC RtCBD得
13、到由RtACD RtCBD得到(3)、由等积法得到ABCD =ACBC8、若将半圆换成正三角形、正方形或任意的相似形,S1S2S3都成立。9、在解直角三角形时常用词语:1仰角和俯角 在视线与水平线所成的角中,视线在水平线上方的叫做_,视线在水平线下方的叫做_. 2坡度和坡角 通常把坡面的铅直高度h和水平宽度l之比叫_,用字母i表示,即i_,把坡面与水平面的夹角叫做_, 记作,于是i_tan,显然,坡度越大,角越大,坡面就越陡. 10正多边形的有关计算边长:an2Rnsineq f(180,n) 周长:Pnnan边心距:rnRncoseq f(180,n) 面积:Sneq f(1,2)anrnn
14、内角:eq f(n2180,n) 外角:eq f(360,n) 中心角:eq f(360,n)11、特殊锐角三角函数值SinCostan1Cot112、某些数列前n项之和1+2+3+4+5+6+7+8+9+n=n(n+1)/21+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1)13、平行线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。如图:abc,直线l1与l2分别与直线a、b、c相交与点A、B、C和D、E、F,则有。(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线
15、段成比例。如图:ABC中,DEBC,DE与AB、AC相交与点D、E,则有:14、极差、方差与标准差计算公式:极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值;方差:数据、, 的方差为,则=标准差:数据、, 的标准差,则=一组数据的方差越大,这组数据的波动越大。15、求抛物线的顶点、对称轴的方法 公式法:,顶点是,对称轴是直线。 配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线。 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。 若已知抛物线上两点(及y
16、值相同),则对称轴方程可以表示为:16、直线与抛物线的交点 轴与抛物线得交点为(0, )。 抛物线与轴的交点。 二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定: a有两个交点()抛物线与轴相交; b有一个交点(顶点在轴上)()抛物线与轴相切; c没有交点()抛物线与轴相离。 平行于轴的直线与抛物线的交点 同一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根。 一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:a方程组有两组不同的解时与
17、有两个交点;b方程组只有一组解时与只有一个交点;c方程组无解时与没有交点。 抛物线与轴两交点之间的距离:若抛物线与轴两交点为,则 图形的定义、性质、判定一、角平分线性质:角的平分线上的点到角两边的_相等判定:角的内部到角的两边的距离相等的点在_上二、线段垂直平分线1性质:线段的垂直平分线上的点与这条线段两个端点的距离_2判定:与一条线段两个端点距离相等的点,在这条线段的_上点拨 线段的垂直平分线可以看作到线段两个端点距离相等的所有点的集合三、等腰三角形定义、性质:1定义:有两_相等的三角形是等腰三角形2性质:(1)等腰三角形两个腰_(2)等腰三角形的两个底角_(简写成等边对等角)(3)等腰三角
18、形的顶角_,底边上的_,底边上的_互相重合(4)等腰三角形是轴对称图形,有_条对称轴注意 (1)等腰三角形两腰上的高相等(2)等腰三角形两腰上的中线相等(3)等腰三角形两底角的平分线相等(4)等腰三角形一腰上的高与底边的夹角等于顶角的一半(5)等腰三角形顶角的外角平分线与底边平行(6)等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高(7)等腰三角形底边延长线上任意一点到两腰的距离之差等于一腰上的高判定:1定义法2如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)注意 (1)一边上的高与这边上的中线重合的三角形是等腰三角形. (2)一边上的高与这边所对角的平分线
19、重合的三角形是等腰三角形. (3)一边上的中线与三角形中这边所对角的平分线重合的三角形是等腰三角形四、等边三角形1等边三角形的性质(1)等边三角形的三条边都相等(2)等边三角形的三个内角都相等并且每一个角都等于60.(3)等边三角形是轴对称图形,并且有_条对称轴注意 等边三角形具有等腰三角形的所有性质2等边三角形的判定(1)三条边相等的三角形叫做等边三角形(2)三个角相等的三角形是等边三角形(3)有一个角等于60的_三角形是等边三角形五、直角三角形1定义:有一个角是直角的三角形是直角三角形2直角三角形的性质(1)直角三角形的两个锐角_(2)直角三角形的斜边上的中线等于斜边的_(3)在直角三角形
20、中,30的角所对的边等于斜边的_(4)在直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30度。(5)、勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么 a2b2_.3直角三角形的判定(1)、判定:如果一个三角形中有两个角互余,那么这个三角形是_三角形(2)、如果三角形的三边长分别为a、b、c,满足a2b2c2,那么这个三角形是_三角形(3)、如果一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。(4)、直径所对的圆周角是90度。(5)、如果一个三角形的外心在三角形的一条边上,那么这个三角形是直角三角形。(6)、圆的切线垂直于过切点的半
21、径。六、相似三角形1相似三角形的对应角_,对应边的比_相似多边形对应角相等,对应边的比_相似多边形周长的比等于_相似多边形面积的比等于_的平方2相似三角形的周长比等于_3相似三角形的面积比等于相似比的_注意 相似三角形的对应高的比,对应中线的比,对应角平分线的比都等于相似比判定定理:1如果两个三角形的三组对应边的比相等,那么这两个三角形相似2如果两个三角形的两组对应边的比相等,并且夹角相等,那么这两个三角形相似3如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似. 注意 直角三角形被斜边上的高分成的两个直角三角形与原直角三角形都相似七、位似图形1定义:两个多边形不仅
22、相似,而且对应点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做.注意 位似图形是相似图形的一个特例,位似图形一定是相似图形,相似图形不一定是位似图形2位似图形的性质(1)位似图形上任意一对对应点到位似中心的距离之比等于_(2)对应线段互相_3坐标系中的位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,位似比为k,那么位似图形对应点的坐标的比等于_八、平行四边形1定义:两组对边分别_的四边形是平行四边形;2平行四边形的性质(1)平行四边形的两组对边分别_;(2)平行四边形的两组对边分别_;(3)平行四边形的两组对角分别_;(4)平行四边形的对角线互相_ .
23、总结 平行四边形是中心对称图形,它的对称中心是两条对角线的交点 判定:1定义法2两组对角分别_的四边形是平行四边形3两组对边分别_的四边形是平行四边形4对角线_的四边形是平行四边形5一组对边平行且_的四边形是平行四边形九、矩形1矩形的定义有一个角是直角的_是矩形2矩形的性质(1)矩形对边_;(2)矩形四个角都是_角(或矩形四个角都相等);(3)矩形对角线_、_.总结 (1)矩形的两条对角线把矩形分成四个面积相等的等腰三角形;3矩形的判定(1)定义法; (2)有三个角是直角的_是矩形;(3)对角线相等的_是矩形. 十、菱形1菱形的定义一组邻边相等的_是菱形2菱形的性质(1)菱形的四条边都_;(2
24、)菱形的对角线互相_,互相_,并且每一条对角线平分一组对角;(3)菱形是中心对称图形,它的对称中心是两条对角线的交点;菱形也是轴对称图形,两条对角线所在的直线是它的对称轴注意 菱形的面积:(1)由于菱形是平行四边形,所以菱形的面积底高;(2)因为菱形的对角线互相垂直平分,所以其对角线将菱形分成4个全等三角形,故菱形的面积等于两对角线乘积的_. 3菱形的判定(1)定义法;(2)对角线互相垂直的_是菱形;(3)四条边都相等的_是菱形十一、正方形1正方形的定义有一组邻边相等的_是正方形2正方形的性质(1)正方形对边平行;(2)正方形四边相等;(3)正方形四个角都是直角;(4)正方形对角线相等,互相_
25、,每条对角线平分一组对角;(5)正方形既是轴对称图形也是中心对称图形,对称轴有四条,对称中心是对角线的交点3正方形的判定(1)定义法;(2)有一个角是直角的_是正方形注意 矩形、菱形、正方形都是平行四边形,且是特殊的平行四边形矩形是有一内角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;正方形既是有一组邻边相等的矩形,又是有一内角为直角的菱形十二、中点四边形1定义:顺次连接四边形各边中点所得的四边形,我们称之为中点四边形2常用结论:(1)任意四边形的中点四边形是平行四边形;(2)对角线相等的四边形的中点四边形是菱形;(3)对角线互相垂直的四边形的中点四边形是矩形;(4)对角线相等且互相垂
26、直的四边形的中点四边形是正方形十三、等腰梯形1等腰梯形在同一底上的两个角_2等腰梯形的两条对角线_总结 (1)等腰梯形两腰相等、两底平行;(2)等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴判定:1定义法;2同一底上的两个角_的梯形是等腰梯形注意 等腰梯形的判定方法:(1)先判定它是梯形;(2)再用“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形十四、三角形外心和内心(1)三角形的内切圆的圆心叫做三角形的内心三角形的内心就是三内角角平分线的交点。(2)三角形的外接圆的圆心叫做三角形的外心三角形的外心就是三边中垂线的交点常见结论:RtABC的三条边分别为:a、b、c
27、(c为斜边),则它的内切圆的半径;ABC的周长为,面积为S,其内切圆的半径为r,则(3)、内心到三角形三边距离相等。(4)、外心到三角形三个定点的距离相等。(5)、锐角三角形的外心在三角形内部;钝角三角形的外心在三角形的外部,直角三角形的外心在斜边的中点处。初中数学重要公式1、几何计数:(1)当一条直线上有n个点时,在这条直线上存在_ _ 条线段(2)平面内有n个点,过两点确定一条直线,在这个平面内最多存在_ _条直线(3)如果平面内有n条直线,最多存在_ _个交点(4)如果平面内有n条直线,最多可以将平面分成_ _部分(5)、有公共端点的n条射线(两条射线的最大夹角小于平角),则存在_ _个
28、角2、ABCD,分别探讨下面四个图形中APC与PAB、PCD的关系。3、全等三角形的判定方法:a三条边对应相等的两个三角形全等(简记为_)b两个角和它们的夹边对应相等的两个三角形全等(简记为_)c两个角和其中一个角的对边对应相等的两个三角形全等(简记为_)d两条边和它们的夹角对应相等的两个三角形全等(简记为_)e斜边和一条直角边对应相等的两个直角三角形全等(简记为_)4、坐标系中的位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,位似比为k,那么位似图形对应点的坐标的比等于_5、n边形的内角和等于_;多边形的外角和都等于_6、在四边形的四个内角中,最多能有_3_个钝角,最多能有_3
29、_个锐角如果一个多边形的边数增加1,那么这个多边形的内角和增加_180_度4n边形有_条对角线5、用_、_完全相同的一种或几种_进行拼接,彼此之间不留空隙,不重叠的铺成一片,就是平面图形的_. 注意 要实现平面图形的镶嵌,必须保证每个拼接点处的角恰好能拼成_.总结 平面图形的镶嵌的常见形式(1)用同一种正多边形可以镶嵌的只有三种情况:_个正三角形或_个正四边形或_个正六边形(2)用两种正多边形镶嵌用正三角形和正四边形镶嵌:_个正三角形和_个正四边形;用正三角形和正六边形镶嵌:用_个正三角形和_个正六边形或者用_个正三角形和_个正六边形;用正四边形和正八边形镶嵌:用_个正四边形和_个正八边形可以
30、镶嵌(3)用三种不同的正多边形镶嵌用正三角形、正四边形和正六边形进行镶嵌,设用m块正三角形、n块正方形、k块正六边形,则有60m90n120k360,整理得_,因为m、n、k为整数,所以m_,n_,k_,即用_块正方形,_块正三角形和_块正六边形可以镶嵌6、梯形常用辅助线做法:7、如图:RtABC中,ACB90o,CDAB于D,则有:(1)、ACDB DCBA(2) 由RtABC RtACD得到由RtABC RtCBD得到由RtACD RtCBD得到(3)、由等积法得到ABCD =ACBC8、若将半圆换成正三角形、正方形或任意的相似形,S1S2S3都成立。9、在解直角三角形时常用词语:1仰角和
31、俯角 在视线与水平线所成的角中,视线在水平线上方的叫做_,视线在水平线下方的叫做_. 2坡度和坡角 通常把坡面的铅直高度h和水平宽度l之比叫_,用字母i表示,即i_,把坡面与水平面的夹角叫做_, 记作,于是i_tan,显然,坡度越大,角越大,坡面就越陡. 10正多边形的有关计算边长:an2Rnsineq f(180,n) 周长:Pnnan边心距:rnRncoseq f(180,n) 面积:Sneq f(1,2)anrnn内角:eq f(n2180,n) 外角:eq f(360,n) 中心角:eq f(360,n)11、特殊锐角三角函数值SinCostan1Cot112、某些数列前n项之和1+2
32、+3+4+5+6+7+8+9+n=n(n+1)/21+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1)13、平行线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。如图:abc,直线l1与l2分别与直线a、b、c相交与点A、B、C和D、E、F,则有。(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。如图:ABC中,DEBC,DE与AB、AC相交与点D、E,则有:14、极差、方差与标准差计算公式:极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,
33、用这种方法得到的差称为极差,即:极差=最大值-最小值;方差:数据、, 的方差为,则=标准差:数据、, 的标准差,则=一组数据的方差越大,这组数据的波动越大。15、求抛物线的顶点、对称轴的方法 公式法:,顶点是,对称轴是直线。 配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线。 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。 若已知抛物线上两点(及y值相同),则对称轴方程可以表示为:16、直线与抛物线的交点 轴与抛物线得交点为(0, )。 抛物线与轴的交点。 二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个
34、实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定: a有两个交点()抛物线与轴相交; b有一个交点(顶点在轴上)()抛物线与轴相切; c没有交点()抛物线与轴相离。 平行于轴的直线与抛物线的交点 同一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根。 一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:a方程组有两组不同的解时与有两个交点;b方程组只有一组解时与只有一个交点;c方程组无解时与没有交点。 抛物线与轴两交点之间的距离:若抛物线与轴两交点为,则 图形的定义、性质、判定一、角平分线性质:角的平
35、分线上的点到角两边的_相等判定:角的内部到角的两边的距离相等的点在_上二、线段垂直平分线1性质:线段的垂直平分线上的点与这条线段两个端点的距离_2判定:与一条线段两个端点距离相等的点,在这条线段的_上点拨 线段的垂直平分线可以看作到线段两个端点距离相等的所有点的集合三、等腰三角形定义、性质:1定义:有两_相等的三角形是等腰三角形2性质:(1)等腰三角形两个腰_(2)等腰三角形的两个底角_(简写成等边对等角)(3)等腰三角形的顶角_,底边上的_,底边上的_互相重合(4)等腰三角形是轴对称图形,有_条对称轴注意 (1)等腰三角形两腰上的高相等(2)等腰三角形两腰上的中线相等(3)等腰三角形两底角的
36、平分线相等(4)等腰三角形一腰上的高与底边的夹角等于顶角的一半(5)等腰三角形顶角的外角平分线与底边平行(6)等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高(7)等腰三角形底边延长线上任意一点到两腰的距离之差等于一腰上的高判定:1定义法2如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)注意 (1)一边上的高与这边上的中线重合的三角形是等腰三角形. (2)一边上的高与这边所对角的平分线重合的三角形是等腰三角形. (3)一边上的中线与三角形中这边所对角的平分线重合的三角形是等腰三角形四、等边三角形1等边三角形的性质(1)等边三角形的三条边都相等(2)等边三角形
37、的三个内角都相等并且每一个角都等于60.(3)等边三角形是轴对称图形,并且有_条对称轴注意 等边三角形具有等腰三角形的所有性质2等边三角形的判定(1)三条边相等的三角形叫做等边三角形(2)三个角相等的三角形是等边三角形(3)有一个角等于60的_三角形是等边三角形五、直角三角形1定义:有一个角是直角的三角形是直角三角形2直角三角形的性质(1)直角三角形的两个锐角_(2)直角三角形的斜边上的中线等于斜边的_(3)在直角三角形中,30的角所对的边等于斜边的_(4)在直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30度。(5)、勾股定理:如果直角三角形的两直角边长分别为a、b,斜
38、边长为c,那么 a2b2_.3直角三角形的判定(1)、判定:如果一个三角形中有两个角互余,那么这个三角形是_三角形(2)、如果三角形的三边长分别为a、b、c,满足a2b2c2,那么这个三角形是_三角形(3)、如果一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。(4)、直径所对的圆周角是90度。(5)、如果一个三角形的外心在三角形的一条边上,那么这个三角形是直角三角形。(6)、圆的切线垂直于过切点的半径。六、相似三角形1相似三角形的对应角_,对应边的比_相似多边形对应角相等,对应边的比_相似多边形周长的比等于_相似多边形面积的比等于_的平方2相似三角形的周长比等于_3相似三
39、角形的面积比等于相似比的_注意 相似三角形的对应高的比,对应中线的比,对应角平分线的比都等于相似比判定定理:1如果两个三角形的三组对应边的比相等,那么这两个三角形相似2如果两个三角形的两组对应边的比相等,并且夹角相等,那么这两个三角形相似3如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似. 注意 直角三角形被斜边上的高分成的两个直角三角形与原直角三角形都相似七、位似图形1定义:两个多边形不仅相似,而且对应点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做.注意 位似图形是相似图形的一个特例,位似图形一定是相似图形,相似图形不一定是位似图形2位似图形的性质(1)位似图形上任意一对对应点到位似中心的距离之比等于_(2)对应线段互相_3坐标系中的位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,位似比为k,那么位似图形对应点的坐标的比等于_八、平行四边形1定义:两组对边分别_的四边形是平行四边形;2平行四边形的性质(1)平行四边形的两组对边分别_;(2)平行四边形的两组对边分别_;(3)平行四边形的两组对角分别_;(4)平行四边形的对角线互相_ .总结 平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度汽车玻璃加工合同:含工艺流程与质量控制2篇
- 2025年度学校安全工作考核评价责任书3篇
- 2025届高考数学一轮复习第四章三角函数解三角形第6节解三角形第2课时解三角形的综合应用教学案含解析新人教A版
- 二零二五年度股权代持服务协议书3篇
- 二零二五年度个人旅游消费贷款合同规范范本3篇
- 2025年度电梯设备租赁与安装服务合同范本3篇
- 四年级综合实践教学参考计划范文5篇
- 2024电子商务产业园企业入驻合同
- 2025年度版权许可协议with分成模式2篇
- 2025年土鸡养殖基地与超市直供合作购销合同3篇
- 2023-2024学年人教版七年级上册生物期末测试卷(含答案)
- 教师培训课件信息技术与数字素养教育
- 部编人教版语文八年级上册文言文课下注释
- 全套消防管理记录本
- 相关方人员入场安全告知书
- 建设项目环境监理 环境监理大纲的编制 环境监理大纲的编制
- 完整版供应商质量审核检查评分表(供应商审核表)
- 项目工程安全管理责任区域划分表
- 公卫执业医师述职报告
- 02jrc901b电子海图操作jan中文说明书
- 教育培训学校(机构)课堂教学反馈表
评论
0/150
提交评论