2022-2023学年北京市第十四中学九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2022-2023学年北京市第十四中学九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2022-2023学年北京市第十四中学九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2022-2023学年北京市第十四中学九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2022-2023学年北京市第十四中学九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷

2、和答题卡一并交回。一、选择题(每题4分,共48分)1抛物线关于轴对称的抛物线的解析式为( ).ABCD2不等式的解集在数轴上表示正确的是()ABCD3已知抛物线yx2+(2a+1)x+a2a,则抛物线的顶点不可能在()A第一象限B第二象限C第三象限D第四象限4如图,线段CD两个端点的坐标分别为C(4,4)、D(6,2),以原点O为位似中心,在第一象限内将线段CD缩小为线段AB,若点B的坐标为(3,1),则点A的坐标为()A(0,3)B(1,2)C(2,2)D(2,1)5下列几何体的三视图相同的是( )A圆柱B球C圆锥D长方体6如图,四边形ABCD中,A=90,AB=8,AD=6,点M,N分别为

3、线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )A8B6C4D57如图,一次函数的图象与反比例函数(为常数且)的图象都经过,结合图象,则不等式的解集是()ABC或D或8若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是( )A15B20C24D309一次函数y=ax+b与反比例函数,其中ab0,a、b为常数,它们在同一坐标系中的图象可以是()ABCD10如图,半径为的中,弦,所对的圆心角分别是,若,则弦的长等于( )ABCD11下列说法中,不正确的个数是( )直径是弦;经过圆内一定点可以作无数条直径;平分弦的

4、直径垂直于弦;过三点可以作一个圆;过圆心且垂直于切线的直线必过切点.( )A1个B2个C3个D4个12若反比例函数的图象在每一条曲线上都随的增大而增大,则的取值范围是()ABCD二、填空题(每题4分,共24分)13已知中,交于,且,则的长度为_.14方程(x+1)(x2)5化成一般形式是_15如果关于的方程有两个相等的实数根,那么的值为_,此时方程的根为_16如图,在轴的正半轴上依次截取,过点、,分别作轴的垂线与反比例函数的图象相交于点、,得直角三角形、,并设其面积分别为、,则_的整数).17将数12500000用科学计数法表示为_18若两个相似三角形的周长比是,则对应中线的比是_三、解答题(

5、共78分)19(8分)在平面直角坐标系中有,为原点,将此三角形绕点顺时针旋转得到,抛物线过三点(1)求此抛物线的解析式及顶点的坐标;(2)直线与抛物线交于两点,若,求的值;(3)抛物线的对称轴上是否存在一点使得为直角三角形20(8分)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点、,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为(1)甲运动后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间

6、?21(8分)如图,在ABC中,ACB=90,B=30,AC=1,D为AB的中点,EF为ACD 的中位线,四边形EFGH为ACD的内接矩形(矩形的四个顶点均在ACD的边上)(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动在平移过程中,当矩形与CBD重叠部分的面积为时,求矩形平移的距离;(3)如图,将(2)中矩形平移停止时所得的矩形记为矩形,将矩形绕点按顺时针方向旋转,当落在CD上时停止转动,旋转后的矩形记为矩形,设旋转角为,求的值22(10分)某商店经销一种销售成本为每千克40元的水产品,规定试销期间销售单价不低于成本价.据试销发现,月销量(千克)与销售

7、单价(元)符合一次函数.若该商店获得的月销售利润为元,请回答下列问题:(1)请写出月销售利润与销售单价之间的关系式(关系式化为一般式);(2)在使顾客获得实惠的条件下,要使月销售利润达到8000元,销售单价应定为多少元?(3)若获利不高于,那么销售单价定为多少元时,月销售利润达到最大?23(10分)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=3m,BD=9m,求旗杆AB的高24(10分)如图,抛物线与轴交于,两点(点位于点的左侧),与轴交于点已知的面积是(1)求的值;(2)在内是否存在一点,

8、使得点到点、点和点的距离相等,若存在,请求出点的坐标;若不存在,请说明理由;(3)如图,是抛物线上一点,为射线上一点,且、两点均在第三象限内,、是位于直线同侧的不同两点,若点到轴的距离为,的面积为,且,求点的坐标25(12分)如图,射线于点,是线段上一点,是射线上一点,且满足. (1)若,求的长;(2)当的长为何值时,的长最大,并求出这个最大值. 26如图,双曲线(0)与直线交于点A(2,4)和B(a,2),连接OA和OB(1)求双曲线和直线关系式;(2)观察图像直接写出:当时,的取值范围;(3)求AOB的面积参考答案一、选择题(每题4分,共48分)1、B【解析】先求出抛物线y=2(x2)21

9、关于x轴对称的顶点坐标,再根据关于x轴对称开口大小不变,开口方向相反求出a的值,即可求出答案.【详解】抛物线y=2(x2)21的顶点坐标为(2,1),而(2,1)关于x轴对称的点的坐标为(2,1),所以所求抛物线的解析式为y=2(x2)2+1故选B【点睛】本题考查了二次函数的轴对称变换,此图形变换包括x轴对称和y轴对称两种方式.二次函数关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数,顶点位置改变,只要根据关于x轴对称的点坐标特征求出新的顶点坐标,即可确定解析式. 二次函数关于y轴对称的图像,其形状不变,开口方向也不变,因此a值不变,但是顶点位置改变,只要根据关于y轴对称

10、的点坐标特征求出新的顶点坐标,即可确定解析式.2、B【解析】先求出不等式的解集,再在数轴上表示出来即可【详解】解:,移项得:,合并同类项得:,系数化为1得,在数轴上表示为:故选:B【点睛】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示3、D【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得【详解】抛物线yx2+(2a+1)x+a2a的顶点的横坐

11、标为:xa,纵坐标为:y2a,抛物线的顶点横坐标和纵坐标的关系式为:y2x+,抛物线的顶点经过一二三象限,不经过第四象限,故选:D【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键4、C【解析】直接利用位似图形的性质得出对应点坐标乘以得出即可【详解】解:在第一象限内将线段CD缩小为线段AB,点B的坐标为(3,1),D(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,C(4,4),端A点的坐标为:(2,2)故选:C【点睛】本题考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.5、B【解析】试题分析:选项A、圆柱的三视图,如图所示,不合题

12、意;选项B、球的三视图,如图所示,符合题意;选项C、圆锥的三视图,如图所示,不合题意;选项D、长方体的三视图,如图所示,不合题意;故答案选B.考点:简单几何体的三视图6、D【分析】根据三角形中位线定理可知EF=DN,求出DN的最大值即可【详解】解:如图,连结DN,DE=EM,FN=FM,EF=DN,当点N与点B重合时,DN的值最大即EF最大,在RtABD中,A=90,AD=6,AB=8,EF的最大值=BD=1故选:D【点睛】本题考查了三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型7、C【分析】根据一次函数图象在反比例函数图象上方的的取值范围

13、便是不等式的解集【详解】解:由函数图象可知,当一次函数的图象在反比例函数(为常数且)的图象上方时,的取值范围是:或,不等式的解集是或. 故选C【点睛】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集利用数形结合是解题的关键8、A【解析】试题分析:圆锥的主视图是腰长为5,底边长为6的等腰三角形,这个圆锥的底面圆的半径为3,母线长为5.这个圆锥的侧面积=故选A考点:1.简单几何体的三视图;2.圆锥的计算9、C【分析】根据一次函数的位置确定a、b的大小,看是否符合ab0,交y轴负半轴,则b0,满足ab0,反比例函数y= 的图象过一、三象限,所以此选项不正确;B. 由一

14、次函数图象过二、四象限,得a0,满足ab0,ab0,交y轴负半轴,则b0,满足ab0,反比例函数y=的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a0,交y轴负半轴,则b0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小10、A【解析】作AHBC于H,作直径CF,连结BF,先利用等角的补角相等得到DAE=BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AHBC,根据垂径定理得CH=BH,易得AH为CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解解:作AHB

15、C于H,作直径CF,连结BF,如图,BAC+EAD=120,而BAC+BAF=120,DAE=BAF,弧DE弧BF,DE=BF=6,AHBC,CH=BH,CA=AF,AH为CBF的中位线,AH=BF=1,BC2BH2故选A“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半也考查了垂径定理和三角形中位线性质11、C【分析】根据弦的定义即可判断;根据圆的定义即可判断;根据垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧即可判断;确定圆的条件:不在同一直线上的三点确定一个圆即可判断;根据切线的性质:经过圆心且垂直于切线的直

16、线必经过切点即可判断【详解】解:直径是特殊的弦所以正确,不符合题意;经过圆心可以作无数条直径所以不正确,符合题意;平分弦(不是直径)的直径垂直于弦所以不正确,符合题意;过不在同一条直线上的三点可以作一个圆所以不正确,符合题意;过圆心且垂直于切线的直线必过切点所以正确,不符合题意故选:C【点睛】本题考查了切线的性质、垂径定理、确定圆的条件,解决本题的关键是掌握圆的相关定义和性质12、B【分析】根据反比例函数的性质,可求k的取值范围【详解】解:反比例函数图象的每一条曲线上,y都随x的增大而增大,k20,k0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k0,双曲线的两支分

17、别位于第二、第四象限,在每一象限内y随x的增大而增大二、填空题(每题4分,共24分)13、【分析】过B作BFCD于F,BGBF交AD的延长线于G,则四边形DGBF是矩形,由矩形的性质得到BG=DF,DG=FB由BFC是等腰直角三角形,得到FC=BF=1设DE=9x,则CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1在RtADC和RtAGB中,由AC=AB,利用勾股定理得到AD=16x-1证明FEBDEA,根据相似三角形的对应边成比例可求出x的值,进而得到AD,DE的长在RtADE中,由勾股定理即可得出结论【详解】如图,过B作BFCD于F,BGBF交AD的延长线于G

18、,四边形DGBF是矩形,BG=DF,DG=FBBCD=45,BFC是等腰直角三角形BC=,FC=BF=1设DE=9x,则CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1在RtADC和RtAGB中,AC=AB,解得:AD=16x-1FBAD,FEBDEA,18x1-16x+1=0,解得:x=或x=当x=时,7x-10,不合题意,舍去,x=,AD=16x-1=6,DE=9x=,AE=故答案为:【点睛】本题考查了矩形的判定与性质以及相似三角形的判定与性质求出AD=16x-1是解答本题的关键14、x2x71【分析】一元二次方程,b,c是常数且的a、b、c分别是二次项系数、

19、一次项系数、常数项【详解】解:方程(x+1)(x2)5化成一般形式是x2x71,故答案为:x2x71【点睛】本题考查了一元二次方程的一般形式:,b,c是常数且a1)特别要注意a1的条件这是在做题过程中容易忽视的知识点在一般形式中叫二次项,bx叫一次项,是常数项其中a,b,c分别叫二次项系数,一次项系数,常数项15、1 【分析】根据题意,讨论当k=0时,符合题意,当时,一元二次方程有两个相等的实数根即,据此代入系数,结合完全平方公式解题即可【详解】当k=0,方程为一元一次方程,没有两个实数根,故关于的方程有两个相等的实数根,即即故答案为:1;【点睛】本题考查一元二次方程根与系数的关系、完全平方公

20、式等知识,是重要考点,难度较易,掌握相关知识是解题关键16、【解析】根据反比例函数y=中k的几何意义再结合图象即可解答【详解】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.=1, =1,O =,=,同理可得,=1 = = =.故答案是:.【点睛】本题考查反比例函数系数k的几何意义.17、【分析】根据科学记数法的定义以及应用将数进行表示即可【详解】 故答案为:【点睛】本题考查了科学记数法的定义以及应用,掌握科学记数法的定义以及应用是解题的关键18、4:9【分析】相似三角形的面积之比等于相似比的平方【详解】解:两个相似三角形的周长比是,两个

21、相似三角形的相似比是,两个相似三角形对应中线的比是,故答案为三、解答题(共78分)19、(1);点;(2);(3)存在,Q1(1,-1),Q2(1,2), Q3(1,4), Q4(1,-5)【分析】(1)用待定系数法可求抛物线的解析式,进行配成顶点式即可写出顶点坐标;(2)将直线与抛物线联立,通过根与系数关系得到,再通过得出,通过变形得出代入即可求出的值;(3)分:, , 三种情况分别利用勾股定理进行讨论即可【详解】(1), 绕点顺时针旋转,得到, 点的坐标为:,将点A,B代入抛物线中得 解得 此抛物线的解析式为:;点(2)直线:与抛物线的对称轴交点的坐标为,交抛物线于,由得:,(3)存在,或

22、, 设点,若,则 即或若,则即若,则即即Q1(1,-1), Q2(1,2), Q3(1,4), Q4(1,-5).【点睛】本题主要考查二次函数与几何综合,掌握二次函数的图象和性质,分情况讨论是解题的关键20、(1)28cm;(2)3s;(3)7s【分析】(1)将t=4代入公式计算即可;(2)第一次相遇即是共走半圆的长度,据此列方程,求解即可;(3)第二次相遇应是走了三个半圆的长度,得到,解方程即可得到答案.【详解】解:(1)当 t=4s 时,cm.答:甲运动 4s 后的路程是 (2) 由图可知,甲乙第一次相遇时走过的路程为半圆 ,甲走过的路程为 ,乙走过的路程为 ,则.解得 或 (不合题意,舍

23、去)答:甲、乙从开始运动到第一次相遇时,它们运动了 3s(3) 由图可知,甲乙第二次相遇时走过的路程为三个半圆 ,则解得 或 (不合题意,舍去)答:甲、乙从开始运动到第二次相遇时,它们运动了 7s【点睛】此题考查一元二次方程的实际应用,正确理解题意是解题的关键.21、(1);(2)矩形移动的距离为时,矩形与CBD重叠部分的面积是;(3)【解析】分析:(1)根据已知,由直角三角形的性质可知AB=2,从而求得AD,CD,利用中位线的性质可得EF,DF,利用三角函数可得GF,由矩形的面积公式可得结果;(2)首先利用分类讨论的思想,分析当矩形与CBD重叠部分为三角形时(0 x),利用三角函数和三角形的

24、面积公式可得结果;当矩形与CBD重叠部分为直角梯形时(x),列出方程解得x;(3)作H2QAB于Q,设DQ=m,则H2Qm,又DG1,H2G1,利用勾股定理可得m,在RtQH2G1中,利用三角函数解得cos详解:(1)如图,在中,ACB=90,B=30,AC=1,AB=2, 又D是AB的中点,AD=1,又EF是的中位线, 在中,AD=CD, A=60,ADC=60在中,60,矩形EFGH的面积 (2)如图,设矩形移动的距离为则,当矩形与CBD重叠部分为三角形时,则, (舍去)当矩形与CBD重叠部分为直角梯形时,则,重叠部分的面积S=, 即矩形移动的距离为时,矩形与CBD重叠部分的面积是 (3)

25、如图,作于设,则,又, 在RtH2QG1中, ,解之得(负的舍去)点睛:本题主要考查了直角三角形的性质,中位线的性质和三角函数定义等,利用分类讨论的思想,构建直角三角形是解答此题的关键22、(1)W10 x2+1400 x40000;(2)销售单价应定为1元;(3)销售单价定为2元时,月销售利润达到最大【分析】(1)根据总利润=每千克的利润月销量,即可求出月销售利润与销售单价之间的关系式,然后化为一般式即可;(2)将=800代入(1)的关系式中,求出x即可;(3)根据获利不高于,即可求出x的取值范围,然后根据二次函数的增减性,即可求出当月销售利润达到最大时,销售单价的定价【详解】解:(1)根据

26、题意得,W(x40)(10 x+1000)10 x2+1000 x+400 x4000010 x2+1400 x40000; (2)当W10 x2+1400 x400008000时,得到x2140 x+48000,解得:x11,x280,使顾客获得实惠,x1 答:销售单价应定为1元 (3)W-10 x2+1400 x40000-10(x70)2+9000 获利不得高于70%,即x404070%,x2 -100,对称轴为直线x=70 当x2时,y随x的增大而增大 当x2时,W最大891答:销售单价定为2元时,月销售利润达到最大【点睛】此题考查的是二次函数是应用,掌握实际问题中的等量关系、二次函数

27、和一元二次方程的关系和利用二次函数的增减性求值是解决此题的关键23、旗杆AB的高为2m【分析】证明OABOCD利用相似三角形对应线段成比例可求解.【详解】解:由题意可知:B=ODC=90,O=OOABOCD而OB=OD+BD=3+9=1AB=2旗杆AB的高为2m【点睛】本题考查了相似三角形的判定和性质,熟练利用已知条件判定三角形相似是解题的关键.24、(1)-3;(2)存在点,使得点到点、点和点的距离相等;(3)坐标为【分析】(1)令,求出x的值即可求出A、B的坐标,令x=0,求出y的值即可求出点C的坐标,从而求出AB和OC,然后根据三角形的面积公式列出方程即可求出的值;(2)由题意,点即为外

28、接圆圆心,即点为三边中垂线的交点,利用A、C两点的坐标即可求出、的中点坐标,然后根据等腰三角形的性质即可得出线段的垂直平分线过原点,从而求出线段的垂直平分线解析式,然后求出AB中垂线的解析式,即可求出点的坐标;(3)作轴交轴于,易证,从而求出,利用待定系数法和一次函数的性质分别求出直线AC、BP的解析式,和二次函数的解析式联立,即可求出点P的坐标,然后利用SAS证出,从而得出,设,利用平面直角坐标系中任意两点之间的距离公式即可求出m,从而求出点Q的坐标【详解】解:(1)令,即解得,由图象知:,AB=1令x=0,解得y=点C的坐标为OC=解得:,(舍去)(2)存在,由题意,点即为外接圆圆心,即点为三边中垂线的交点,、的中点坐标为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论