版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十八章 平行四边形18.2 特殊的平行四边形18.2.3 正方形1.理解正方形的概念.2.探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别.(重点、难点)3.会应用正方形的性质解决相关证明及计算问题.(难点)4.探索并证明正方形的判定,并了解平行四边形、矩形、菱形之间的联系和区别;(重点、难点)学习目标新课导入观察下面图形,正方形是我们熟悉的几何图形,在生活中无处不在.情景引入你还能举出其他的例子吗?新课讲解 知识点1 正方形的性质 矩 形问题1:矩形怎样变化后就成了正方形呢?你有什么 发现?问题引入正方形新课讲解问题2 菱形怎样变化后就成了正方形呢?你有什么发现?正方形
2、新课讲解邻边相等矩形正方形 菱 形一个角是直角正方形正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫正方形.归纳总结新课讲解已知:如图,四边形ABCD是正方形.求证:正方形ABCD四边相等,四个角都是直角.ABCD证明:四边形ABCD是正方形.A=90, AB=AC (正方形的定义). 又正方形是平行四边形.正方形是矩形(矩形的定义), 正方形是菱形(菱形的定义).A=B =C =D = 90, AB= BC=CD=AD.证一证新课讲解已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,ACBD.ABCDO证明:正方形ABCD是矩形, AO=
3、BO=CO=DO. 正方形ABCD是菱形. ACBD.新课讲解思考 请同学们拿出准备好的正方形纸片,折一折,观察并思考.正方形是不是轴对称图形?如果是,那么对称轴有几条?对称性: .对称轴:.轴对称图形4条ABCD新课讲解矩形菱形正方形平行四边形正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有.平行四边形、矩形、菱形、正方形之间关系:性质:1.正方形的四个角都是直角,四条边相等. 2.正方形的对角线相等且互相垂直平分.归纳总结新课讲解例1 求证: 正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.ADCBO已知: 如图,四边形ABCD是正方
4、形,对角线AC、BD相 交于点O.求证: ABO、 BCO、 CDO、 DAO是全等的等腰直角三角形. 证明: 四边形ABCD是正方形, AC=BD,ACBD,AO=BO=CO=DO. ABO、 BCO、 CDO、 DAO都是等腰直角三角形,并且ABO BCO CDO DAO.典例精析新课讲解例2 如图,在正方形ABCD中, BEC是等边三角形, 求证: EADEDA15 .证明: BEC是等边三角形,BE=CE=BC,EBC=ECB=60, 四边形ABCD是正方形,AB=BC=CD,ABC=DCB=90,AB=BE=CE=CD, ABE= DCE=30,ABE,DCE是等腰三角形, BAE=
5、 BEA= CDE= CED=75,EAD= EDA=90-75=15.新课讲解1.正方形具有而矩形不一定具有的性质是 ( ) A.四个角相等 B.对角线互相垂直平分 C.对角互补 D.对角线相等2.正方形具有而菱形不一定具有的性质( ) A.四条边相等 B.对角线互相垂直平分 C.对角线平分一组对角 D.对角线相等BD练一练新课讲解 知识点2 正方形的判定活动1 准备一张矩形的纸片,按照下图折叠,然后展开,折叠部分得到一个正方形,可量一量验证验证.正方形猜想 满足怎样条件的矩形是正方形?矩形正方形一组邻边相等对角线互相垂直新课讲解已知:如图,在矩形ABCD中,AC , DB是它的两条对角线,
6、 ACDB.求证:四边形ABCD是正方形.证明:四边形ABCD是矩形, AO=CO=BO=DO ,ADC=90. ACDB, AD=AB=BC=CD, 四边形ABCD是正方形.证一证对角线互相垂直的矩形是正方形.ABCDO新课讲解活动2 把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状.量量看是不是正方形.正方形菱形猜想 满足怎样条件的菱形是正方形?正方形一个角是直角对角线相等新课讲解已知:如图,在菱形ABCD中,AC , DB是它的两条对角线, AC=DB.求证:四边形ABCD是正方形.证明:四边形ABCD是菱形,AB=BC=CD=AD,ACDB.AC=DB, AO=BO=CO=
7、DO,AOD,AOB,COD,BOC是等腰直角三角形,DAB=ABC=BCD=ADC=90, 四边形ABCD是正方形.证一证ABCDO对角线相等的菱形是正方形.新课讲解正方形判定的几条途径:正方形正方形+先判定菱形先判定矩形矩形条件(二选一)菱形条件(二选一)一个直角,一组邻边相等,总结归纳对角线相等对角线垂直平行四边形正方形一组邻边相等一内角是直角新课讲解在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是( )AAC=BD,ABCD,AB=CDBADBC,A=CCAO=BO=CO=DO,ACBDDAO=CO,BO=DO,AB=BC练一练CABCDO新课讲解例1 在正方形ABC
8、D中,点E、F、M、N分别在各边上,且AE=BF=CM=DN四边形EFMN是正方形吗?为什么?证明:四边形ABCD是正方形,AB=BC=CD=DA,A=B=C=D=90.AE=BF=CM=DN,AN=BE=CF=DM.分析:由已知可证AENBFECMFDNM,得四边形EFMN是菱形,再证有一个角是直角即可.典例精析新课讲解在AEN、BFE、CMF、DNM中, AE=BF=CM=DN, A=B=C=D, AN=BE=CF=DM,AENBFECMFDNM,EN=FE=MF=NM,ANE=BEF,四边形EFMN是菱形, NEF=180(AEN+BEF) =180(AEN+ANE) =18090=90
9、.四边形EFMN是正方形 .新课讲解思考 前面学菱形时我们探究了顺次连接任意四边形各边中点所得的四边形是平行四边形.顺次连接矩形各边中点能得到菱形,那么顺次连接正方形各边中点能得到怎样的特殊平行四边形?ABCDABCDABCD矩形正方形任意四边形平行四边形菱形正方形EFGHEFGHEFGH课堂小结1.四个角都是直角2.四条边都相等3.对角线相等且互相垂直平分正方形的性质性质定义有一组邻相等,并且有一个角是直角的平行四边形叫做正方形.课堂小结5种判定方法三个角是直角四条边相等一个角是直角或对角线相等一组邻边相等或对角线垂直一组邻边相等或对角线垂直一个角是直角或对角线相等一个角是直角且一组邻边相等
10、平行四边形、矩形、菱形、正方形的判定小结当堂小练1.下列命题正确的是( ) A.四个角都相等的四边形是正方形 B.四条边都相等的四边形是正方形 C.对角线相等的平行四边形是正方形 D.对角线互相垂直的矩形是正方形D当堂小练3在正方形ABC中,ADB= ,DAC= , BOC= .4.在正方形ABCD中,E是对角线AC上一点,且AE=AB,则EBC的度数是 .ADBCOADBCOE459022.5第3题图第4题图45当堂小练5.一个正方形的对角线长为2cm,则它的面积是 ()A.2cm2 B.4cm2 C.6cm2 D.8cm2 A4.平行四边形、矩形、菱形、正方形都具有的是() A对角线互相平分 B对角线互相垂直 C对角线相等 D对角线互相垂直且相等 A当堂小练5.如图,正方形ABCD的边长为1cm,AC为对角线,AE平分BAC,EFAC,求BE的长解:四边形ABCD为正方形,B90,ACB45,ABBC1cm.EFAC,EFAEFC90.又ECF45,EFC是等腰直角三角形,EFFC.BAEFAE,BEFA90,AEAE,ABEAFE,ABAF1cm,BEEF.FCBE.在RtABC中,FCACAF( 1)cm,BE( 1)cm拓展与延伸6.如图,ABC中,D是BC上任意一点,DEAC,DFAB(1)试说明四边形AEDF的形状,并说明理由(2)连接AD,当AD满足什么条件时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年教育培训合同的教学内容
- 二零二四年船舶建造与买卖合同细节分析2篇
- 2024年度加工合同:某服装品牌委托加工厂加工服装的具体要求3篇
- 钢铁行业节能减排技术进展
- 基于区块链的信用评估模型优化
- 二零二四年度教育培训合同标的:职业技能培训服务
- 2024年度广告投放合同:某互联网公司与某广告传媒公司就线上广告推广达成共识2篇
- 2024年度虚拟现实技术应用代理合同3篇
- 2024年度房屋租赁:单间出租房租赁合同纠纷解决条款
- 二零二四年度电视剧配音及后期制作合同
- 2024年职业健康素养考试题库及答案
- 植物学#-形考作业2-国开(ZJ)-参考资料
- 汽车制造工艺基础(第3版)课件:车身冲压
- 2024-2030年飞机租赁行业市场发展分析及发展趋势前景预测报告
- 2025届高考英语3500词汇基础+提升练01含解析
- GB/T 1984-2024高压交流断路器
- 小学生法制教育课件
- 2024年执业医师考试-医师定期考核(人文医学)考试近5年真题集锦(频考类试题)带答案
- 指向全人发展的幼儿体育课程体系建设
- 院前急救技能竞赛(驾驶员)理论考试题库大全-上(选择题)
- 2024年银行业法律法规知识竞赛活动考试题库(含答案)
评论
0/150
提交评论