2022年防城港市中考数学全真模拟试题含解析_第1页
2022年防城港市中考数学全真模拟试题含解析_第2页
2022年防城港市中考数学全真模拟试题含解析_第3页
2022年防城港市中考数学全真模拟试题含解析_第4页
2022年防城港市中考数学全真模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,矩形纸片中,将沿折叠,使点落在点处,交于点,则的长等于( )ABCD2若分式在实数范围内有意义,则实数的取值范围是( )ABCD3将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()ABCD4如图,如果从半径为9cm

2、的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A6cmBcmC8cmDcm5如图是一个放置在水平桌面的锥形瓶,它的俯视图是()ABCD 6九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )ABCD7下列几何体中,三视图有两个相同而另一个不同的是()A(1)(2)B(2)(3)C(2)(4)D(3)(4)8如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )ABCD9已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若nm,则( )Aa0且4a+b=0Ba

3、0且4a+b=0Ca0且2a+b=0Da0且2a+b=010若点P(3,y1)和点Q(1,y2)在正比例函数y=k2x(k0)图象上,则y1与y2的大小关系为()Ay1y2 By1y2 Cy1y2 Dy1y2二、填空题(本大题共6个小题,每小题3分,共18分)11把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm,则截面圆的半径为 cm12抛物线y=(x+1)2 - 2的顶点坐标是 _ 13如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且ABx轴,则以AB为边的等边三角形ABC的周长为 .14化简:_15已知一元二次方程x24x30

4、的两根为m,n,则mn= 16分解因式:=_三、解答题(共8题,共72分)17(8分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45,在楼顶C测得塔顶A的仰角3652已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE(参考数据:sin36520.60,tan36520.75)18(8分)已知抛物线y=ax2+bx+c()若抛物线的顶点为A(2,4),抛物线经过点B(4,0)求该抛物线的解析式;连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为

5、x,当4+6S6+8时,求x的取值范围;()若a0,c1,当x=c时,y=0,当0 xc时,y0,试比较ac与l的大小,并说明理由19(8分)吴京同学根据学习函数的经验,对一个新函数y的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x的取值范围是 列表:x210123456y m1 5n1表中m ,n 描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:观察所画出的函数图象,写出该函数的两条性质: ; 20(8分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富某班模拟

6、开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图请结合统计图中的信息,回答下列问题:(1)本班有多少同学优秀?(2)通过计算补全条形统计图(3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好?21(8分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.40

7、.67,cos42.40.74,tan42.40.905,sin45.50.71,cos45.50.70,tan45.51.02)()求发射台与雷达站之间的距离;()求这枚火箭从到的平均速度是多少(结果精确到0.01)?22(10分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;OBOD,12,OEOF,请你从中选取两个条件证明BEODFO;(2)在(1)条件中你所选条件的前提下,添加AECF,求证:四边形ABCD是平行四边形23(12分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的

8、162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角BAE=68,新坝体的高为DE,背水坡坡角DCE=60.求工程完工后背水坡底端水平方向增加的宽度AC(结果精确到0.1米,参考数据:sin 680.93,cos 680.37,tan 682.5,1.73)24已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF求证:EAAF参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由折叠的性质得到AE=AB,E=B=90,易证RtAEFRtCDF,即可得到结论EF=DF;易得FC=FA,设

9、FA=x,则FC=x,FD=6-x,在RtCDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可【详解】矩形ABCD沿对角线AC对折,使ABC落在ACE的位置,AE=AB,E=B=90,又四边形ABCD为矩形,AB=CD,AE=DC,而AFE=DFC,在AEF与CDF中, ,AEFCDF(AAS),EF=DF;四边形ABCD为矩形,AD=BC=6,CD=AB=4,RtAEFRtCDF,FC=FA,设FA=x,则FC=x,FD=6-x,在RtCDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x,则FD6-x=.故选B【点睛】考查了折叠的性质:折叠前后两图形

10、全等,即对应角相等,对应边相等也考查了矩形的性质和三角形全等的判定与性质以及勾股定理2、D【解析】根据分式有意义的条件即可求出答案【详解】解:由分式有意义的条件可知:,故选:【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.3、A【解析】分析:面动成体由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转4、B

11、【解析】试题分析:从半径为9cm的圆形纸片上剪去圆周的一个扇形,留下的扇形的弧长=12,根据底面圆的周长等于扇形弧长,圆锥的底面半径r=6cm,圆锥的高为=3cm故选B.考点: 圆锥的计算5、B【解析】根据俯视图是从上面看到的图形解答即可.【详解】锥形瓶从上面往下看看到的是两个同心圆.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.6、C【解析】试题分析:由题意可得,第一小组对应的圆心角度数是:360=72,故选C考点:1.扇形统计图;2.条形统计

12、图7、B【解析】根据三视图的定义即可解答【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.8、B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小考点:三视图9、A【解析】由图像经过点(0,m)、(4、m)可知对称

13、轴为x=2,由nm知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.【详解】图像经过点(0,m)、(4、m)对称轴为x=2,则,4a+b=0图像经过点(1,n),且nm抛物线的开口方向向上,a0,故选A.【点睛】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.10、A【解析】分别将点P(3,y1)和点Q(1,y2)代入正比例函数y=k2x,求出y1与y2的值比较大小即可.【详解】点P(3,y1)和点Q(1,y2)在正比例函数y=k2x(k0)图象上,y1=k2(-3)=3k2,y2=k2(-1)=k2,k0,y1y2.故答案选A.【点睛】本题考查

14、了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】过点O作OMEF于点M,反向延长OM交BC于点N,连接OF,设OF=r,则OM=80-r,MF=40,然后在RtMOF中利用勾股定理求得OF的长即可【详解】过点O作OMEF于点M,反向延长OM交BC于点N,连接OF,设OF=x,则OM=80r,MF=40,在RtOMF中,OM2+MF2=OF2,即(80r)2+402=r2,解得:r=1cm故答案为112、 (-1,-2)【解析】试题分析:因为y=(x+1)22是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,2

15、),故答案为(1,2)考点:二次函数的性质13、18。【解析】根据二次函数的性质,抛物线的对称轴为x=3。A是抛物线与y轴的交点,点B是这条抛物线上的另一 点,且ABx轴。A,B关于x=3对称。AB=6。又ABC是等边三角形,以AB为边的等边三角形ABC的周长为63=18。14、3【解析】分析:根据算术平方根的概念求解即可.详解:因为32=9所以=3.故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.15、1【解析】试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=3,将所求式子利用完全平方公式变形后,即mn+=3mn=16+9=1故

16、答案为1考点:根与系数的关系16、【解析】将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式【详解】直接提取公因式即可:三、解答题(共8题,共72分)17、52【解析】根据楼高和山高可求出EF,继而得出AF,在RtAFC中表示出CF,在RtABD中表示出BD,根据CF=BD可建立方程,解出即可【详解】如图,过点C作CFAB于点F. 设塔高AE=x,由题意得,EF=BECD=5627=29m,AF=AE+EF=(x+29)m,在RtAFC中,ACF=3652,AF=(x+29)m,则,在RtAB

17、D中,ADB=45,AB=x+56,则BD=AB=x+56,CF=BD,解得:x=52,答:该铁塔的高AE为52米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.18、()y=x2+3x当3+6S6+2时,x的取值范围为是x或x()ac1【解析】(I)由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x0,通过分割图形求面积法结

18、合3+6S6+2,即可求出x的取值范围,当点P在第四象限时,x0,通过分割图形求面积法结合3+6S6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0 xc时y0,可得出抛物线的对称轴x=c,进而可得出b-2ac,结合b=-ac-1即可得出ac1【详解】(I)设抛物线的解析式为y=a(x+2)23,抛物线经过点B(3,0),0=a(3+2)23,解得:a=1,该抛物线的解析式为y=(x+2)23=x2+3x设直线AB的解析式为y=kx+m(k0),将A(2,3)、B(3,0)代入y=kx+m,得:,解得:,直线AB的解析式为y=2x2直线l与A

19、B平行,且过原点,直线l的解析式为y=2x当点P在第二象限时,x0,如图所示SPOB=3(2x)=3x,SAOB=33=2,S=SPOB+SAOB=3x+2(x0)3+6S6+2,即,解得:x,x的取值范围是x当点P在第四象限时,x0,过点A作AEx轴,垂足为点E,过点P作PFx轴,垂足为点F,则S四边形AEOP=S梯形AEFPSOFP=(x+2)x(2x)=3x+3SABE=23=3,S=S四边形AEOP+SABE=3x+2(x0)3+6S6+2,即,解得:x,x的取值范围为x综上所述:当3+6S6+2时,x的取值范围为是x或x(II)ac1,理由如下:当x=c时,y=0,ac2+bc+c=

20、0,c1,ac+b+1=0,b=ac1由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0)把x=0代入y=ax2+bx+c,得y=c,抛物线与y轴的交点为(0,c)a0,抛物线开口向上当0 xc时,y0,抛物线的对称轴x=c,b2acb=ac1,ac12ac,ac1【点睛】本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)巧设顶点式,代入点B的坐标求出a值,分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=

21、-ac-1及b-2ac19、(1)一切实数(2)-,- (3)见解析(4)该函数有最小值没有最大值;该函数图象关于直线x2对称【解析】(1)分式的分母不等于零;(2)把自变量的值代入即可求解;(3)根据题意描点、连线即可;(4)观察图象即可得出该函数的其他性质【详解】(1)由y知,x24x+50,所以变量x的取值范围是一切实数故答案为:一切实数;(2)m,n,故答案为:-,-;(3)建立适当的直角坐标系,描点画出图形,如下图所示:(4)观察所画出的函数图象,有如下性质:该函数有最小值没有最大值;该函数图象关于直线x2对称故答案为:该函数有最小值没有最大值;该函数图象关于直线x2对称【点睛】本题

22、综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键20、(1)本班有4名同学优秀;(2)补图见解析;(3)1500人.【解析】(1)根据统计图即可得出结论; (2)先计算出优秀的学生,再补齐统计图即可;(3)根据图2的数值计算即可得出结论.【详解】(1)本班有学生:2050%=40(名),本班优秀的学生有:404030%204=4(名),答:本班有4名同学优秀;(2)成绩一般的学生有:4030%=12(名),成绩优秀的有4名同学,补全的条形统计图,如图所示;(3)300050%=1500(名),答:该校3000人有1500人成绩良好【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的知识点.21、 ()发射台与雷达站之间的距离约为;()这枚火箭从到的平均速度大约是.【解析】()在RtACD中,根据锐角三角函数的定义,利用ADC的余弦值解直角三角形即可;()在RtBCD和RtACD中,利用BDC的正切值求出BC的长,利用ADC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论