新冀教版九年级下册初中数学 30.2 二次函数的图像和性质 教学课件_第1页
新冀教版九年级下册初中数学 30.2 二次函数的图像和性质 教学课件_第2页
新冀教版九年级下册初中数学 30.2 二次函数的图像和性质 教学课件_第3页
新冀教版九年级下册初中数学 30.2 二次函数的图像和性质 教学课件_第4页
新冀教版九年级下册初中数学 30.2 二次函数的图像和性质 教学课件_第5页
已阅读5页,还剩96页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、教学课件 数学 九年级下册 冀教版第三十章 二次函数30.2二次函数的图像和性质第1课时 二次函数y=ax的图像和性质学习目标1.正确理解抛物线的有关概念.(重点)2.会用描点法画出二次函数y=ax的图像,概括出图像的特点.(难点) 3.掌握形如y=ax的二次函数图像的性质,并会应用.(难点)情境引入二次函数y=ax2的图像一x-3-2-10123y=x2例1 画出二次函数y=x2的图像.9410194典例精析1. 列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值:24-2-4o369xy2. 描点:根据表中x,y的数值在坐标平面中描点(x,y) 3. 连线:如图,再用平滑曲

2、线顺次连接各点,就得到y = x2 的图像-33o369当取更多个点时,函数y=x2的图像如下:xy 二次函数y=x2的图像形如物体抛射时所经过的路线,我们把它叫做抛物线.这条抛物线关于y轴对称, y轴就是它的对称轴. 对称轴与抛物线的交点叫做抛物线的顶点.练一练:画出函数y=-x2的图像.y24-2-40-3-6-9xx-3-2-10123y=-x2-9-4-10-1-4-9 根据你以往学习函数图像性质的经验,说说二次函数y=x2的图像有哪些性质,并与同伴交流.xoy=x2议一议1.yx2是一条抛物线;2.图像开口向上;3.图像关于y轴对称;4.顶点( 0 ,0 );5.图像有最低点y说说二

3、次函数y=-x2的图像有哪些性质,与同伴交流.oxyy=-x2 1.y-x2是一条抛物线;2.图像开口向下;3.图像关于y轴对称;4.顶点( 0 ,0 );5.图像有最高点1. 顶点都在原点; 3.当a0时,开口向上; 当a0时,开口向下二次函数y=ax2 的图像性质:知识要点2. 图像关于y轴对称; 观察下列图像,抛物线y=ax2与y=-ax2(a0)的关系是什么?二次项系数互为相反数,开口相反,大小相同,它们关于x轴对称.xyOy=ax2y=-ax2交流讨论二二次函数y=ax2的性质问题1:观察图形,y随x的变化如何变化?(-2,4)(-1,1)(2,4)(1,1)对于抛物线 y = ax

4、 2 (a0) 当x0时,y随x取值的增大而增大; 当x0时,y随x取值的增大而减小.知识要点(-2,-4)(-1,-1)(2,-4)(1,-1)问题2:观察图形,y随x的变化如何变化?对于抛物线 y = ax 2 (a0) 当x0时,y随x取值的增大而减小; 当x0时,a越大,开口越小.练一练:在同一直角坐标系中,画出函数 的图像x432101234x21.510.500.511.52 -8 -4.5-2 -0.50 -8 -4.5 -2 -0.5 -8 -4.5-2-0.50-8-4.5-2-0.5xyO22246448当a0a”“”或“”);(2)如图,此二次函数的图像经过点(0,0),

5、长方形ABCD的顶点A、B在x轴上,C、D恰好在二次函数的图像上,B点的横坐标为2,求图中阴影部分的面积之和14、说出下列抛物线的开口方向、对称轴和顶点:开口方向对称轴顶点向上向下向下向上y轴y轴y轴y轴(0,0)(0,0)(0,0)(0,0)O 5.若抛物线y=ax2 (a 0),过点(-1,2). (1)则a的值是 ; (2)对称轴是 ,开口 . (3)顶点坐标是 ,顶点是抛物线上的最 值 . 抛物线在x轴的 方(除顶点外). (4) 若A(x1,y1),B(x2,y2)在这条抛物线上,且x1x2 6.已知二次函数y=x2,若xm时,y最小值为0,求实数m的取值范围解:二次函数y=x2,

6、当x=0时,y有最小值,且y最小值=0, 当xm时,y最小值=0, m07.已知:如图,直线y3x4与抛物线yx2交于A、B两点,求出A、B两点的坐标,并求出两交点与原点所围成的三角形的面积解:由题意得 解得所以此两函数的交点坐标为A(4,16)和B(1,1)直线y3x4与y轴相交于点C(0,4),即CO4.SACO CO48,SBOC 412,SABOSACOSBOC10.二次函数y=ax2的图像及性质画法描点法以对称轴为中心对称取点图像抛物线轴对称图形性质重点关注4个方面开口方向及大小对称轴顶点坐标增减性第2课时 二次函数y=a(x-h)2和y=a(x-h)2+k的图像和性质学习目标1.会

7、用描点法画出y=a(x-h)2和y=a(x-h)2+k (a 0)的图像.2.掌握二次函数y=a(x-h)2和y=a(x-h)2+k (a 0)的图像的性质并会应用.(重点)3.理解二次函数y=a(x-h)2和y=a(x-h)2+k (a 0)与y=ax2 (a 0)之间的联系.(难点)复习引入a,c的符号a0,c0a0,c0a0a0,c0图像开口方向对称轴顶点坐标函数的增减性最值向上向下y轴(直线x=0)y轴(直线x=0)(0,c)(0,c)当x0时,y随x增大而增大.当x0时,y随x增大而减小.x=0时,y最小值=cx=0时,y最大值=c问题1 说说二次函数y=ax2+c(a0)的图像的特

8、征. 问题2 二次函数 y=ax2+c(a0)与 y=ax2(a 0) 的图像有何关系?答:二次函数y=ax2+c(a 0)的图像可以由 y=ax2(a 0)的图像平移得到: 当c 0 时,向上平移c个单位长度得到. 当c 0,开口向上;当a0a0开口方向顶点坐标对称轴增减性极值向上向下(h ,k)(h ,k)x=hx=h当xh时,y随着x的增大而增大. 当xh时,y随着x的增大而减小. x=h时,y最小=kx=h时,y最大=k抛物线y=a(x-h)2+k可以看作是由抛物线y=ax2经过平移得到的.顶点坐标对称轴最值y=-2x2y=-2x2-5y=-2(x+2)2y=-2(x+2)2-4y=(

9、x-4)2+3y=-x2+2xy=3x2+x-6(0,0)y轴0(0,-5)y轴-5(-2,0)直线x=-20(-2,-4)直线x=-2-4(4,3)直线x=43?二次函数y=ax2+bx+c的图像和性质一探究归纳我们已经知道y=a(x-h)2+k的图像和性质,能否利用这些知识来讨论 的图像和性质?问题1 怎样将 化成y=a(x-h)2+k的形式?配方可得想一想:配方的方法及步骤是什么?配方你知道是怎样配方的吗? (1)“提”:提出二次项系数;(2)“配”:括号内配成完全平方;(3)“化”:化成顶点式.提示:配方后的表达式通常称为配方式或顶点式.问题2 你能说出 的对称轴及顶点坐标吗?答:对称

10、轴是直线x=6,顶点坐标是(6,3).问题3 二次函数 可以看作是由 怎样平移得到的?答:平移方法1: 先向上平移3个单位,再向右平移6个单位得到的; 平移方法2: 先向右平移6个单位,再向上平移3个单位得到的.问题4 如何用描点法画二次函数 的图像?9876543x解: 先利用图形的对称性列表7.553.533.557.5510 xy510O然后描点画图,得到图像如图.问题5 结合二次函数 的图像,说出其性质.510 xy510 x=6当x6时,y随x的增大而增大.O例1 画出函数 的图像,并说明这个函数具有哪些性质. x-2-101234y-6.5-4-2.5-2-2.5-4-6.5解:

11、函数 通过配方可得 ,先列表:典例精析2xy-204-2-4-4-6-8然后描点、连线,得到图像如下图.由图像可知,这个函数具有如下性质:当x1时,函数值y随x的增大而增大;当x1时,函数值y随x的增大而减小;当x=1时,函数取得最大值,最大值y=-2. 求二次函数y=2x2-8x+7图像的对称轴和顶点坐标. 因此,二次函数y=2x2-8x+7图像的对称轴是直线x=2,顶点坐标为(2,-1).解:练一练将一般式y=ax2+bx+c化成顶点式y=a(x-h)2+k二 我们如何用配方法将一般式y=ax2+bx+c(a0)化成顶点式y=a(x-h)2+k?y=ax+bx+c 归纳总结二次函数y=ax

12、2+bx+c的图像和性质1.一般地,二次函数y=ax2+bx+c的可以通过配方化成y=a(x-h)2+k的形式,即因此,抛物线y=ax2+bx+c 的顶点坐标是:对称轴是:直线归纳总结二次函数y=ax2+bx+c的图像和性质(1)(2)xyOxyO如果a0,当x 时,y随x的增大而增大.如果a0,当x 时,y随x的增大而减小.例2 已知二次函数y=x22bxc,当x1时,y的值随x值的增大而减小,则实数b的取值范围是( ) Ab1 Bb1 Cb1 Db1解析:二次项系数为10,抛物线开口向下,在对称轴右侧,y的值随x值的增大而减小,由题设可知,当x1时,y的值随x值的增大而减小,抛物线y=x2

13、2bxc的对称轴应在直线x=1的左侧而抛物线y=x22bxc的对称轴 ,即b1,故选D .D填一填顶点坐标对称轴最值y=-x2+2xy=-2x2-1y=9x2+6x-5(1,3)x=1最大值1(0,-1)y轴最大值-1最小值-6( ,-6)直线x=二次函数字母系数与图像的关系三合作探究问题1 一次函数y=kx+b的图像如下图所示,请根据一次函数图像的性质填空:xyOy=k1x+b1xyOy=k2x+b2y=k3x+b3k1 _ 0b1 _ 0k2 _ 0b2 _ 0k3 _ 0b3 _ 0 xyO问题2 二次函数 的图像如下图所示,请根据二次函数的性质填空:a1 _ 0b1_ 0c1_ 0a2

14、_ 0b2_ 0c2_ 0开口向上,a0对称轴在y轴左侧,x0对称轴在y轴右侧,x0 x=0时,y=c.xyOa3_ 0b3_ 0c3_ 0a4_ 0b4_ 0c4_ 0开口向下,a0对称轴是y轴,x=0对称轴在y轴右侧,x0 x=0时,y=c.二次函数y=ax2+bx+c的图像与a、b、c的关系字母符号图像的特征a0开口_a0开口_b=0对称轴为_轴a、b同号对称轴在y轴的_侧a、b异号对称轴在y轴的_侧c=0经过原点c0与y轴交于_半轴c0与y轴交于_半轴向上向下y左右正负知识要点例3 已知二次函数yax2bxc的图像如图所示,下列结论:abc0;2ab0;4a2bc0;(ac)2b2.

15、其中正确的个数是()A1B2C3D4D由图像上横坐标为 x2的点在第三象限可得4a2bc0,故正确; 由图像上x1的点在第四象限得abc0,由图像上x1的点在第二象限得出 abc0,则(abc)(abc)0,即(ac)2b20,可得(ac)2b2,故正确【解析】由图像开口向下可得a0,由对称轴在y轴左侧可得b0,由图像与y轴交于正半轴可得 c0,则abc0,故正确;由对称轴x1可得2ab0,故正确;练一练二次函数 的图像如图,反比例函数 与正比例函数 在同一坐标系内的大致图像是( )解析:由二次函数的图像得知:a0,b0.故反比例函数的图像在二、四象限,正比例函数的图像经过一、三象限.即正确答案是C.C1.已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x-10123y51-1-11A.y轴 B.直线x= C. 直线x=2 D.直线x= 则该二次函数图像的对称轴为( )DOyx1232.已知二次函数y=ax2+bx+c(a0)的图像如图所示,则下列结论:(1)a、b同号;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论