版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、PAGE PAGE 9课题:2.3二次函数的性质(1)【学习目标】1.从具体函数的图象中认识二次函数的基本性质.2.了解二次函数与二次方程的相互关系.3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会【前置性学习】一、基础回顾二次函数: y=ax2 +bx + c (a 0)的图象是一条抛物线,它的开口由什么决定呢?补充:当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立.二,新课教学:1.探索填空: 根据下边已画好抛物线y= -2x2的顶点坐标是 , 对称轴是 , 在 侧,即x_0时, y随着x的增大而增大;在 侧,即x_0时, y随着x
2、的增大而减小. 当x= 时,函数y最大值是_. 当x_0时,y0 3.归纳: 二次函数y=ax2+bx+c(a0)的图象和性质(1).顶点坐标与对称轴 (2).位置与开口方向 (3).增减性与最值当a 0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当 时,函数y有最小值 。当a 0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当 时,函数y有最大值 4.探索二次函数与一元二次方程 二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.(1).每个图象与x轴有几个交点?(2).一元二次方程x2+2x=0
3、,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?归纳: (3).二次函数y=ax2+bx+c的图象和x轴交点有三种情况: 有两个交点, 有一个交点, 没有交点. 当二次函数y=ax2+bx+c的图象和x轴有交点时, 交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.当b2-4ac0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与 x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当
4、b2-4ac0时,抛物线与x轴没有交点。举例: 求二次函数图象y=x2-3x+2与x轴的交点A、B的坐标。结论1:方程x2-3x+2=0的解就是抛物线y=x2-3x+2与x轴的两个交点的横坐标。因此,抛物线与一元二次方程是有密切联系的。即:若一元二次方程ax2+bx+c=0的两个根是x1、x2,则抛物线y=ax2+bx+c与轴的两个交点坐标分别是A( x1,0),B(x2,0)5.例题教学:例1: 已知函数写出函数图像的顶点、图像与坐标轴的交点,以及图像与y轴的交点关于图象对称轴的对称点。然后画出函数图像的草图;(2)自变量x在什么范围内时, y随着x的增大而增大?何时y随着x的增大而减少;并
5、求出函数的最大值或最小值。归纳:二次函数五点法的画法三.巩固练习: 请完成课本练习:p42. 1,2四.尝试提高:1 五.学习感想: 1、你能正确地说出二次函数的性质吗?2、你能用“五点法”快速地画出二次函数的图象吗?你能利用函数图象回答有关性课题:26.3二次函数的性质(2)【学习目标】1、掌握二次函数解析式的三种形式,并会选用不同的形式,用待定系数法求二次函数的解析式。2、能根据二次函数的解析式确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性。3、能根据二次函数的解析式画出函数的图像,并能从图像上观察出函数的一些性质。【前置性学习】一、基础回顾1、抛物线的顶点坐标是 ,对称轴是 ,在
6、 侧,即x_0时, y随着x的增大而增大; 在 侧,即x_0时, y随着x的增大而减小;当x= 时,函数y最 值是_。2、抛物线的顶点坐标是 ,对称轴是 ,在 侧,即x_0时, y随着x的增大而增大; 在 侧,即x_0时, y随着x的增大而减小;当x= 时,函数y最 值是_。二、例题讲解例1、根据下列条件求二次函数的解析式:(1)函数图像经过点A(-3,0),B(1,0),C(0,-2)(2) 函数图像的顶点坐标是(2,4)且经过点(0,1)(3)函数图像的对称轴是直线x=3,且图像经过点(1,0)和(5,0)说明:本题给出求抛物线解析式的三种解法,关键是看题目所给条件。一般来说:任意给定抛物
7、线上的三个点的坐标,均可设一般式去求;若给定顶点坐标(或对称轴或最值)及另一个点坐标,则可设顶点式较为简单;若给出抛物线与x轴的两个交点坐标,则用分解式较为快捷。例2已知函数y= x2 -2x -3 , ()把它写成的形式;并说明它是由怎样的抛物线经过怎样平移得到的? (2)写出函数图象的对称轴、顶点坐标、开口方向、最值;(3)求出图象与坐标轴的交点坐标;(4)画出函数图象的草图; (5)设图像交x轴于A、B两点,交y 轴于P点,求APB的面积;(6)根据图象草图,说出 x取哪些值时, y=0; y0.说明:(1)对于解决函数和几何的综合题时要充分利用图形,做到线段和坐标的互相转化;(2)利用
8、函数图像判定函数值何时为正,何时为负,同样也要充分利用图像,要使y0.抛物线开口向 a0.抛物线对称轴在y 轴的 侧b=0抛物线对称轴是 轴b0.抛物线与y轴交于 C=0抛物线与y轴交于 c0.抛物线与x 轴有 个交点=0抛物线与x 轴有 个交点0)当t= EQ F(10,13) 时,被开方式169(t- EQ F(10,13) )2+576有最小值576。所以当t= EQ F(10,13) 时,S最小值= EQ R(,576) =24(km)答:经过 EQ F(10,13) 时,两船之间的距离最近,最近距离为24km练习:直角三角形的两条直角边的和为2,求斜边的最小值。三、课堂小结应用二次函数解决实际问题的一般步骤布置作业课题:26.4二次函数的应用(3)【学习目标】1、继续经历利用二次函数解决实际最值问题的过程。2、会综合运用二次函数和其他数学知识解决如有关距离等函数最值问题。3、发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。教学重点和难点:重点:利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题。难点:例3将现实问题数学化,情景比较复杂。【前置性学习】例3某饮料经营部每天的固定成本为200元,某销售的饮料每瓶进价为5元。销售单价(元)6789101112日均销售量(瓶)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024短期汽车租赁服务合同版B版
- 动物行为学知到智慧树章节测试课后答案2024年秋浙江农林大学
- 2025年度博物馆场地租赁及展览展示服务协议3篇
- 2024年数字政府白皮书一体化政务大数据分册
- 船舶制造塔吊租赁协议模板
- 钢结构图书馆钢架焊接施工合同
- 港口晒场施工协议
- 矿业安全监督员租赁协议
- 酒吧休闲鱼池租赁合同
- 食品加工设备维修机井合同
- 2025康复科年度工作计划
- 拼图行业未来五年前景展望
- 广西玉林市(2024年-2025年小学六年级语文)统编版质量测试(上学期)试卷及答案
- 医院医保科工作总结
- 2024-2025学年译林版八年级英语上学期重点词汇短语句子归纳【考点清单】
- 广东省六校联考2024-2025学年高二上学期12月月考英语试题
- 养老护理员技能培训的标准化实施方案
- 2024年企业采购部年终总结及今后计划(3篇)
- 2024中国诚通控股集团限公司总部招聘11人易考易错模拟试题(共500题)试卷后附参考答案
- 物业客服个人述职报告范例
- 数据岗位招聘笔试题与参考答案2024年
评论
0/150
提交评论