版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、动量定理与动量守恒一、动量和冲量1动量物体的质量和速度的乘积叫做动量:p=mv动量是描述物体运动状态的一个状态量,它与时刻相对应。动量是矢量,它的方向和速度的方向相同。动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。(4)研究一条直线上的动量要选择正方向2动量的变化:人“=P一P由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。A、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。B、若初末动量不在同一直线上,则运算遵循平行四边形定则。2冲量力和力
2、的作用时间的乘积叫做冲量:1二Ft(1)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。(2)冲量是矢量,它的方向由力的方向决定。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。(3)高中阶段只要求会用I二Ft计算恒力的冲量。(4)冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。(5)必须清楚某个冲量是哪个力的冲量(6)求合外力冲量的两种方法:A、求合外力,再求合外力的冲量B、先求各
3、个力的冲量,再求矢量和二、动量定理1动量定理一物体所受合外力的冲量等于物体的动量变化。既I=Ap动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。现代物理学把力定义为物体动量的变化率:F=兰(牛顿第二定律的动量形式)。动At量定理和牛顿第二定律的联系与区别厂mvmv、F=2i=ma形式可以相互转化合tAp、尸丁动量的变化率,表示动量变化的快慢合At、牛顿定律适用宏观低速,而动量定理适用于宏观微观高速低速、都是以地面为参考系4)动量定理表
4、达式是矢量式。在一维情况下,各个矢量以同一个规定的方向为正。(5)如果是变力,那么F表示平均值6)对比于动能定理1=Ft=mvmv21W=Fmv2111s=mv22223动量定理的定量计算明确研究对象和研究过程。研究对象可以是一个物体,也可以是几个物体组成的质点组。质点组内各物体可以是保持相对静止的,也可以是相对运动的。研究过程既可以是全过程,也可以是全过程中的某一阶段。进行受力分析。只分析研究对象以外的物体施给研究对象的力。规定正方向。由于力、冲量、速度、动量都是矢量,在一维的情况下,列式前要先规定一个正方向,和这个方向一致的矢量为正,反之为负。写出初、末动量和合外力的冲量(或各外力在各个阶
5、段的冲量的矢量和)。根据动量定理列式求解。4在Ft图中的冲量:Ft图上的“面积”表示冲量的大小。三、动量守恒定律1动量守恒定律的内容一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。即:mv+mv=mv+mv守恒是指整个过程任意时刻相等(时时相等,类11221122比匀速)定律适用于宏观和微观高速和低速2动量守恒定律成立的条件系统不受外力或者所受外力之和为零;系统受外力,但外力远小于内力,可以忽略不计;系统在某一个方向上所受的合外力为零,则该方向上动量守恒。3动量守恒定律的表达形式mv+mv=mv+mv,即p+p二p/+p/,112211221212Ap+Ap=0,Ap=-Ap12
6、124、理解:正方向同参同系微观和宏观都适用5动量守恒定律的重要意义从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一(。另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。5应用动量守恒定律解决问题的基本思路和一般方法分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。明确所研究的相互作用
7、过程,确定过程的始、末状态,即系统内各个物体的初动量和末动量的量值或表达式。注意:在研究地面上物体间相互作用的过程时,各物体的速度均应取地球为参考系。4)确定好正方向建立动量守恒方程求解。四、动量守恒定律的应用1碰撞IIIIII两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。仔细分析一下碰撞的全过程:设光滑水平面上,质量为m的物体a以速度vi向质量为m2的静止物体B运动,B的左端连有轻弹簧。在I位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到II位置A、B
8、速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B开始远离,弹簧开始恢复原长,到III位置弹簧刚好为原长,A、B分开,这时A、B的速度分别为v和v。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹12性如何了。(1)弹簧是完全弹性的。ITII系统动能减少全部转化为弹性势能,11状态系统动能最小而弹性势能最大;IITIII弹性势能减少全部转化为动能;因此I、I状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证明A、B的最终速度分别为:mm2mv二1亠v,v二1v。(这个结论最好背下来,以后经常要用到。)1m+m12m+m11212弹簧不是完全弹性的。丨Til系统动能
9、减少,一部分转化为弹性势能,一部分转化为内能,I状态系统动能仍和相同,弹性势能仍最大,但比小;IITIII弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。弹簧完全没有弹性。ITII系统动能减少全部转化为内能,11状态系统动能仍和相同,但没有弹性势能;由于没有弹性,A、B不再分开,而是共同运动,不再有IITIIIm过程。这种碰撞叫完全非弹性碰撞。可以证明,A、B最终的共同速度为v二v二1v。12m+m112在完全非弹性碰撞过程中,系统的动能损失最大,为:111(fmmv2AE=mv2-m+mJv2=1_2-k2112122(m
10、+m丿。12【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。质量为m的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90。且足够长。求小球能上升到的最大高度H和物块的最终速度v。【例2】动量分别为5kgm/s和6kgm/s的小球A、B沿光滑平面上的同一条直线同向运动,A追上B并发生碰撞后。若已知碰撞后A的动量减小了2kgm/s,而方向不变,那么A、B质量之比的可能范围是什么2子弹打木块类问题子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。【例3】设质量
11、为m的子弹以初速度v。射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。1r11113反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用过程中系统的动能增大,有其它能向动能转化。可以把这类问题统称为反冲。【例4】质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远【例5】总质量为M的火箭模型从飞机上释放时的速度v0速度方向水平。火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度
12、变为多大4爆炸类问题【例6】抛出的手雷在最高点时水平速度为10m/s,这时突然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。5某一方向上的动量守恒【例7】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,贝I当线绳与AB成8角时,圆环移动的距离是多少6物块与平板间的相对滑动【例8】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,mVM,A、B间动摩擦因数为口,现给A和B以大小相等、方向相反的初速度v0使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动位移大小。【例9】两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为mA二.5kg,mB二.3kg,它们的下底面光滑,上表面粗糙;另有一质量c二0.1kg的滑块C(可视为质点),以Vc二25m/S的速度恰
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信阳师范大学《数据仓库实验》2023-2024学年第一学期期末试卷
- 信阳师范大学《量子力学》2022-2023学年第一学期期末试卷
- 用绘画描绘时代风貌计划
- 《机械零件加工》课件第二篇模块一项目二任务一
- 幼儿园用品租赁合同三篇
- 西南医科大学《数据库原理及应用》2021-2022学年第一学期期末试卷
- 西南医科大学《C语言程序设计》2023-2024学年第一学期期末试卷
- 西南交通大学《数据结构原理》2021-2022学年第一学期期末试卷
- 西南交通大学《嵌入式系统》2022-2023学年第一学期期末试卷
- 西京学院《计算机视觉技术》2022-2023学年第一学期期末试卷
- 《媒介策划》课件
- 电动汽车充电基础设施建设实施方案
- 2024中小学校园食品安全和膳食经费管理工作指引
- 2024年世界职业院校技能大赛中职组“法律实务组”赛项考试题库(含答案)
- 开放英语(1)期末考试模拟试题(及答案)
- 智慧医院综合管理解决方案(医院综合监控中心)
- 2024-2030年中国水利工程行业发展规划投资战略分析报告
- 常见消防安全隐患图解精美
- 2024年5月26日河南省事业单位联考《公共基础知识》试题
- 生物化学习题库+参考答案
- 企业劳动人事合规的法律咨询与服务行业市场调研分析报告
评论
0/150
提交评论