版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一组数据8,3,8,6,7,8,7的众数和中位数分别是( )A8,6 B7,6 C7,8 D8,721.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()ABCD3下列调查中,最适合采用全面调查(普查)的是()A
2、对我市中学生每周课外阅读时间情况的调查B对我市市民知晓“礼让行人”交通新规情况的调查C对我市中学生观看电影厉害了,我的国情况的调查D对我国首艘国产航母002型各零部件质量情况的调查4若55+55+55+55+5525n,则n的值为()A10B6C5D35如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()ABCD6已知O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若POC为直角三角形,则PB的长度()A1B5C1或5D2或47下列各数中比1小的数是()A2B1C0D18小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:ab,xy,x+y,a+b,x2y2,a2
3、b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2y2)a2(x2y2)b2因式分解,结果呈现的密码信息可能是( )A我爱美B宜晶游C爱我宜昌D美我宜昌9计算(2017)0()1+tan30的结果是()A5B2C2D110如图,ABC绕点A顺时针旋转45得到ABC,若BAC90,ABAC,则图中阴影部分的面积等于( )A2B1CDl二、填空题(共7小题,每小题3分,满分21分)11用换元法解方程时,如果设,那么原方程化成以为“元”的方程是_12对角线互相平分且相等的四边形是()A菱形B矩形C正方形D等腰梯形13如图,在扇形AOB中,AOB=90,点C为OA的中点,CEOA交于点E,以点
4、O为圆心,OC的长为半径作交OB于点D,若OA=2,则阴影部分的面积为 .14如果,那么=_15在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90的对应点的坐标为_16如图,将边长为的正方形ABCD绕点A逆时针方向旋转30后得到正方形ABCD,则图中阴影部分面积为_平方单位17已知反比例函数y=,当x0时,y随x增大而减小,则m的取值范围是_三、解答题(共7小题,满分69分)18(10分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图和图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为_,图中m的值是_;(
5、2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数19(5分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图所示,乙绘制的如图所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5174.5范围
6、的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?20(8分)已知ABC 中,AD 是BAC 的平分线,且 AD=AB,过点 C 作 AD 的垂线,交 AD 的延长线于点 H(1)如图 1,若BAC=60直接写出B 和ACB 的度数;若 AB=2,求 AC 和 AH 的长;(2)如图 2,用等式表示线段 AH 与 AB+AC 之间的数量关系,并证明21(10分)如图,四边形ABCD中,C90,ADDB,点E为AB的中点,DEBC.(1)求证:BD平分ABC;(2)连接EC,若A30,DC,求EC的
7、长.22(10分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点(1)求抛物线的解析式,并直接写出点D的坐标;(2)当AMN的周长最小时,求t的值;(3)如图,过点M作MEx轴,交抛物线y=ax2+bx于点E,连接EM,AE,当AME与DOC相似时请直接写出所有符合条件的点M坐标23(12分)先化简,再求值:(x+2y)(x2y)+(20 xy38x2y2)4xy,其中x2018,y124(14分)如图1,点为正的边上一点(不与点重合),点分别在边上,且.(1)求
8、证:;(2)设,的面积为,的面积为,求(用含的式子表示);(3)如图2,若点为边的中点,求证: .图1 图2参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:根据中位数和众数的定义分别进行解答即可把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7考点:(1)众数;(2)中位数2、D【解析】根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符
9、合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意故选D.【点睛】本题主要考查轴对称图形的知识点确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合3、D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似由此,对各选项进行辨析即可.【详解】A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影厉害了,我的国情况的调查,人数众多,意义不大,应采用抽样调查,故此
10、选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选D【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查4、D【解析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案【详解】解:55+55+55+55+55=25n,555=52n,则56=52n,解得:n=1故选D【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键5、A【解析】试题分析:
11、从上面看易得上面一层有3个正方形,下面中间有一个正方形故选A【考点】简单组合体的三视图6、C【解析】由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD=1,若POC为直角三角形,只能是OPC=90,则根据相似三角形的性质得到PD=2,于是得到结论【详解】点C是劣弧AB的中点,OC垂直平分AB,DA=DB=3,OD=,若POC为直角三角形,只能是OPC=90,则PODCPD,PD2=41=4,PD=2,PB=32=1,根据对称性得,当P在OC的左侧时,PB=3+2=5,PB的长度为1或5.故选C【点睛】考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图
12、形是解题的关键7、A【解析】根据两个负数比较大小,绝对值大的负数反而小,可得答案【详解】解:A、21,故A正确;B、11,故B错误;C、01,故C错误;D、11,故D错误;故选:A【点睛】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小8、C【解析】试题分析:(x2y2)a2(x2y2)b2=(x2y2)(a2b2)=(xy)(x+y)(ab)(a+b),因为xy,x+y,a+b,ab四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C考点:因式分解.9、A【解析】试题分析:原式=1(3)+=1+3+1=5,故
13、选A10、D【解析】ABC绕点A顺时针旋转45得到ABC,BAC=90,AB=AC=,BC=2,C=B=CAC=C=45,AC=AC=,ADBC,BCAB,AD=BC=1,AF=FC=AC=1,DC=AC-AD=-1,图中阴影部分的面积等于:SAFC-SDEC=11-( -1)2=-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC的长是解题关键二、填空题(共7小题,每小题3分,满分21分)11、y-【解析】分析:根据换元法,可得答案详解:=1时,如果设=y,那么原方程化成以y为“元”的方程是y=1故答案为y=1点睛:本题考查了换元法解分式方程,把
14、换元为y是解题的关键12、B【解析】根据平行四边形的判定与矩形的判定定理,即可求得答案【详解】对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,对角线相等且互相平分的四边形一定是矩形故选B【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理此题比较简单,解题的关键是熟记定理13、.【解析】试题解析:连接OE、AE,点C为OA的中点,CEO=30,EOC=60,AEO为等边三角形,S扇形AOE= S阴影=S扇形AOB-S扇形COD-(S扇形AOE-SCOE)= = =14、【解析】试题解析: 设a=2t,b=3t, 故答案为:15、(3,2)【解析】作出图形,然后写出点
15、A的坐标即可【详解】解答:如图,点A的坐标为(-3,2)故答案为(-3,2)【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解16、62【解析】由旋转角BAB=30,可知DAB=9030=60;设BC和CD的交点是O,连接OA,构造全等三角形,用S阴影部分=S正方形S四边形ABOD,计算面积即可【详解】解:设BC和CD的交点是O,连接OA,AD=AB,AO=AO,D=B=90,RtADORtABO,OAD=OAB=30,OD=OB= ,S四边形ABOD=2SAOD=2=2,S阴影部分=S正方形S四边形ABOD=62【点睛】此题的重点是能够计算出四边形的面积注意
16、发现全等三角形17、m1【解析】分析:根据反比例函数y=,当x0时,y随x增大而减小,可得出m10,解之即可得出m的取值范围详解:反比例函数y=,当x0时,y随x增大而减小,m10,解得:m1 故答案为m1点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m10是解题的关键三、解答题(共7小题,满分69分)18、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众
17、数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可【详解】(1)本次接受随机抽样调查的中学生人数为6024%=250人,m=100(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000=160000人【点睛】本题主要考查数据的收集、 处理以及统计图表.19、 (1)
18、乙在整理数据时漏了一个数据,它在169.5174.5内;(答案不唯一);(2)120;(3)160或1;(4).【解析】(1)对比图与图,找出图中与图不相同的地方;(2)则159.5164.5这一部分的人数占全班人数的比乘以360;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.【详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5164.5这一部分所对应的人数为20人,所以这
19、一部分所对应的扇形圆心角的度数为2060360=120,故答案为120;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1故答案为160或1;(4)列树状图得:P(一男一女)=20、(1)45,;(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC证明见解析.【解析】(1)先根据角平分线的定义可得BAD=CAD=30,由等腰三角形的性质得B=75,最后利用三角形内角和可得ACB=45;如图 1,作高线 DE,在 RtADE 中,由DAC=30,AB=AD=2 可得 DE=1,AE=
20、, 在 RtCDE 中,由ACD=45,DE=1,可得 EC=1,AC= +1,同理可得 AH 的长;(2)如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH,易证ACHAFH,则 AC=AF,HC=HF, 根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论【详解】(1)AD 平分BAC,BAC=60,BAD=CAD=30,AB=AD,B=75,ACB=1806075=45;如图 1,过 D 作 DEAC 交 AC 于点 E, 在 RtADE 中,DAC=30,AB=AD=2,DE=1,AE=,在 RtCDE 中,ACD=45,DE=1,EC=1,
21、AC=+1,在 RtACH 中,DAC=30,CH=AC=AH=;(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC证明:如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH 易证ACHAFH,AC=AF,HC=HF,GHBC,AB=AD,ABD=ADB,AGH=AHG,AG=AH,AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH【点睛】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键21、(1)见
22、解析;(2).【解析】(1)直接利用直角三角形的性质得出,再利用DEBC,得出23,进而得出答案;(2)利用已知得出在RtBCD中,360,得出DB的长,进而得出EC的长.【详解】(1)证明:ADDB,点E为AB的中点,.12.DEBC,23.13.BD平分ABC.(2)解:ADDB,A30,160.3260.BCD90,430.CDE2+490.在RtBCD中,360,DB2.DEBE,160,DEDB2.【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.22、(1)y=x2x,点D的坐标为(2,);(2)t=2;(3)M点的坐标为(2,0)或(6,
23、0)【解析】(1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;(2)连接AC,如图,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明AOC和ACB都是等边三角形,接着证明OCMACN得到CM=CN,OCM=ACN,则判断CMN为等边三角形得到MN=CM,于是AMN的周长=OA+CM,由于CMOA时,CM的值最小,AMN的周长最小,从而得到t的值;(3)先利用勾股定理的逆定理证明OCD为直角三角形,COD=90,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,AMECOD,即|t-4|:4=|t2-t |:,当时,AMEDOC,即|t-
24、4|:=|t2-t |:4,然后分别解绝对值方程可得到对应的M点的坐标【详解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,抛物线解析式为y=x2-x;y=x2-x =-2) 2-;点D的坐标为(2,-);(2)连接AC,如图,AB=4,而OA=4,平行四边形OCBA为菱形,OC=BC=4,C(2,2),AC=4,OC=OA=AC=AB=BC,AOC和ACB都是等边三角形,AOC=COB=OCA=60,而OC=AC,OM=AN,OCMACN,CM=CN,OCM=ACN,OCM+ACM=60,ACN+ACM=60,CMN为等边三角形,MN=CM,AMN的周长=AM+AN+M
25、N=OM+AM+MN=OA+CM=4+CM,当CMOA时,CM的值最小,AMN的周长最小,此时OM=2,t=2;(3)C(2,2),D(2,-),CD=,OD=,OC=4,OD2+OC2=CD2,OCD为直角三角形,COD=90,设M(t,0),则E(t,t2-t),AME=COD,当时,AMECOD,即|t-4|:4=|t2-t |:,整理得|t2-t|=|t-4|,解方程t2-t =(t-4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-2(舍去);当时,AMEDOC,即|t-4|:=|t2-t |:4,整理得|t2-t |=|t-4|,解方程t2-t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-6(舍去);综上所述,M点的坐标为(2,0)或(6,0)【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服装行业设计师工作总结
- 互联网行业招聘创新策略
- 电子行业产品生命周期管理总结
- 美容美发店前台工作总结
- 幸福就是现在
- 同学聚会感言演讲稿
- 2024年木材采购合同模板:木材与家具生产配套协议3篇
- 管理决策之《管理及其决策四》
- 零售店保安工作总结
- 动物园前台服务总结
- 病例报告表(CRF)模板
- 公共体育(三)学习通课后章节答案期末考试题库2023年
- 学校学生评教表
- 现代操作系统教程(慕课版)-课后习题答案1-8章全带原题
- PCS-PC简单使用方法
- 高校人力资源管理系统
- 关于更换公务用车的请示
- 国外发达国家中水回用现状
- 室分工程施工组织设计
- 远洋渔船项目可行性研究报告模板
- 塔塔里尼调压器FLBM5介绍.ppt
评论
0/150
提交评论