版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1下列说法错误的是( )A必然事件的概率为1B数据1、2、2、3的平均数是2C数据5、2、3、0的极差是8D如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次
2、中奖2对于一组统计数据1,1,6,5,1下列说法错误的是()A众数是1B平均数是4C方差是1.6D中位数是63安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为()A4.67107B4.67106C46.7105D0.4671074已知一元二次方程2x2+2x1=0的两个根为x1,x2,且x1x2,下列结论正确的是()Ax1+x2=1Bx1x2=1C|x1|x2|Dx12+x1=5李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时)22.533.54学生人数(名)12863则关于这20名学生阅读
3、小时数的说法正确的是( )A众数是8B中位数是3C平均数是3D方差是0.346如图,把ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MNAB,则点O是ABC的( )A外心B内心C三条中线的交点D三条高的交点7如图,四边形ABCD内接于O,ADBC,BD平分ABC,A130,则BDC的度数为()A100B105C110D1158如图,在菱形纸片ABCD中,AB=4,A=60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上则sinAFG的值为( )ABCD9从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩
4、都是86.5分,方差分别是S甲21.5,S乙22.6,S丙23.5,S丁23.68,你认为派谁去参赛更合适()A甲B乙C丙D丁10如图,在ABC中,AB=AC=3,BC=4,AE平分BAC交BC于点E,点D为AB的中点,连接DE,则BDE的周长是()A3B4C5D6二、填空题(本大题共6个小题,每小题3分,共18分)11一个圆锥的三视图如图,则此圆锥的表面积为_12某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m同时测得旗杆在阳光下的影长为30m,则旗杆的高为_m13如图,在RtABC中,ACB90,ABC30,将ABC绕点C顺时针旋转至ABC,使得点A恰好落在AB上,则旋转角度为_
5、14一个多边形,除了一个内角外,其余各角的和为2750,则这一内角为_度15中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为 16圆锥底面圆的半径为3,高为4,它的侧面积等于_(结果保留)三、解答题(共8题,共72分)17(8分)如图,直线ABCD,BC平分ABD,1=65,求2的度数.18(8分)如图,已知A是O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB求证:AB是O的切线;若ACD=45,OC=2,求弦CD的长19(8分)如图1,已知抛物线y=ax2+bx(a0)经过A(6,0)、B(8,8)两点(1)求抛物线的解析式;(2)将
6、直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且NBO=ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足PODNOB的点P坐标(点P、O、D分别与点N、O、B对应) 20(8分)已知:如图,在平面直角坐标系中,O为坐标原点,OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BCAB交直线y=-m(m54)于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD(1)求证:ABCAOD(2)设ACD的面积为s,求s关于m的函数关系式(3)若四边形ABCD恰有一组对边平行
7、,求m的值 21(8分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀
8、灭空气中的毒,那么这次消毒是否有效?为什么?22(10分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图(2)所抽取的学生参加其中一项活动的众数是 (3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?23(12分)如图,在ABC中,C=90,BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F试判断直线
9、BC与O的位置关系,并说明理由;若BD=23,BF=2,求O的半径24未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观根据调查数据制成了频 分组频数频率0.550.5 0.150.5 200.2100.5150.5 200.5300.3200.5250.5100.1率分布表和频率分布直方图(如图)(1)补全频率分布表;(2)在频率分布直方图中,长方形ABCD的面积是 ;这次调查的样本容量是 ;(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议试估计应对该校1000名学生中约多
10、少名学生提出这项建议参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题分析:A概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B数据1、2、2、3的平均数是1+2+2+34=2,本项正确;C这些数据的极差为5(3)=8,故本项正确;D某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选D考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件2、D【解析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均
11、数公式求得这组数据的平均数为4,故此选项正确;C、S2= (14)2+(14)2+(64)2+(54)2+(14)2=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D考点:1.众数;2.平均数;1.方差;4.中位数.3、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】将4670000用科学记数法表示为4.67106,故选B.【点睛】本题考查了科学记数法表示较大的数,解题的关键是掌握科学记数法的概念进行解答.4、D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x
12、1+x20,x1x20,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断【详解】根据题意得x1+x2=1,x1x2=,故A、B选项错误;x1+x20,x1x20,x1、x2异号,且负数的绝对值大,故C选项错误;x1为一元二次方程2x2+2x1=0的根,2x12+2x11=0,x12+x1=,故D选项正确,故选D【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.5、B【解析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即
13、可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可【详解】解: A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=,所以此选项不正确;D、S2=(23.35)2+2(2.53.35)2+8(33.35)2+6(3.53.35)2+3(43.35)2=0.2825,所以此选项不正确;故选B【点睛】本题考查方差;加权平均数;中位数;众数6、B【解析】利用平行线间的距离相等,可知点到、的距离相等,然后可作出判断.【详解】解:如图,过点作于,于,于.图1
14、,(夹在平行线间的距离相等).如图:过点作于,作于E,作于.由题意可知: , ,图中的点是三角形三个内角的平分线的交点,点是的内心,故选B.【点睛】本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.7、B【解析】根据圆内接四边形的性质得出C的度数,进而利用平行线的性质得出ABC的度数,利用角平分线的定义和三角形内角和解答即可【详解】四边形ABCD内接于O,A=130,C=180-130=50,ADBC,ABC=180-A=50,BD平分ABC,DBC=25,BDC=180-25-50=105,故选:B【点睛】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出C
15、的度数8、B【解析】如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE由题意可得:DE=1,HDE=60,BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sinAFG的值【详解】解:如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE四边形ABCD是菱形,AB=4,DAB=60,AB=BC=CD=AD=4,DAB=DCB=60,DCABHDE=DAB=60,点E是CD中点DE=CD=1在RtDEH中,DE=1,HDE=60DH=1,HE= AH=AD+DH=5在RtAHE中,AE=1 AN=NE=,AEGF,AF=EFCD=BC,
16、DCB=60BCD是等边三角形,且E是CD中点BECD,BC=4,EC=1BE=1CDABABE=BEC=90在RtBEF中,EF1=BE1+BF1=11+(AB-EF)1EF=由折叠性质可得AFG=EFG,sinEFG= sinAFG = ,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键9、A【解析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.10、C【解析】根据等腰三角形的性质可得BE=BC=2,再根据三角形中位
17、线定理可求得BD、DE长,根据三角形周长公式即可求得答案【详解】解:在ABC中,AB=AC=3,AE平分BAC,BE=CE=BC=2,又D是AB中点,BD=AB=,DE是ABC的中位线,DE=AC=,BDE的周长为BD+DE+BE=+2=5,故选C【点睛】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、55cm2【解析】由正视图和左视图判断出圆锥的半径和母线长,然后根据圆锥的表面积公式求解即可.【详解】由三视图可知,半径为5cm,圆锥母线长为6cm,表面积=56+52=55cm2,故答案为: 55cm2
18、.【点睛】本题考查了圆锥的计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键,本题体现了数形结合的数学思想.如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积=rl+r2.12、1【解析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可详解:=,解得:旗杆的高度=30=1 故答案为1点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题13、60【解析】试题解析:ACB=90,ABC=30,A=90-30=60,ABC绕点C顺时针旋转至ABC时点A恰好落在AB上,AC=AC,AAC是等边三
19、角形,ACA=60,旋转角为60故答案为60.14、130【解析】分析:n边形的内角和是 因而内角和一定是180度的倍数而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要小,小的值小于1 详解:设多边形的边数为x,由题意有 解得 因而多边形的边数是18,则这一内角为 故答案为点睛:考查多边形的内角和公式,熟记多边形的内角和公式是解题的关键.15、9.61【解析】将9600000用科学记数法表示为9.61故答案为9.6116、15【解析】根据圆的面积公式、扇形的面积公式计算即可【详解】圆锥的母线长=5,,圆锥底面圆的面积=9圆锥底面圆的周
20、长=23=6,即扇形的弧长为6,圆锥的侧面展开图的面积=65=15,【点睛】本题考查的是扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.三、解答题(共8题,共72分)17、50.【解析】试题分析:由平行线的性质得到ABC=1=65,ABD+BDE=180,由BC平分ABD,得到ABD=2ABC=130,于是得到结论解:ABCD,ABC=1=65,BC平分ABD,ABD=2ABC=130,BDE=180ABD=50,2=BDE=50【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出ABD的度数,题目较好,难度不大18、(1)见解析;(2)+【解析】(1)利用题中的边的关
21、系可求出OAC是正三角形,然后利用角边关系又可求出CAB=30,从而求出OAB=90,所以判断出直线AB与O相切;(2)作AECD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD【详解】(1)直线AB是O的切线,理由如下:连接OAOC=BC,AC=OB,OC=BC=AC=OA, ACO是等边三角形,O=OCA=60,又B=CAB,B=30,OAB=90AB是O的切线(2)作AECD于点EO=60,D=30ACD=45,AC=OC=2,在RtACE中,CE=AE=;D=30,AD=2【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周
22、角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型19、(1)抛物线的解析式是y=x23x;(2)D点的坐标为(4,4);(3)点P的坐标是()或()【解析】试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线AB的解析式,进而由P1ODNOB,得出P1ODN1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标试题解析:(1)抛物线y=ax2+bx(a0)经过A(6,0)、B(8,8)将A与B两点坐标代入得:,解得:,抛物线的解析式是
23、y=x23x (2)设直线OB的解析式为y=k1x,由点B(8,8),得:8=8k1,解得:k1=1 直线OB的解析式为y=x, 直线OB向下平移m个单位长度后的解析式为:y=xm,xm=x23x, 抛物线与直线只有一个公共点, =162m=0,解得:m=8, 此时x1=x2=4,y=x23x=4, D点的坐标为(4,4)(3)直线OB的解析式为y=x,且A(6,0),点A关于直线OB的对称点A的坐标是(0,6),根据轴对称性质和三线合一性质得出ABO=ABO,设直线AB的解析式为y=k2x+6,过点(8,8),8k2+6=8,解得:k2= , 直线AB的解析式是y=,NBO=ABO,ABO=
24、ABO, BA和BN重合,即点N在直线AB上,设点N(n,),又点N在抛物线y=x23x上,=n23n, 解得:n1=,n2=8(不合题意,舍去)N点的坐标为(,)如图1,将NOB沿x轴翻折,得到N1OB1, 则N1(,-),B1(8,8),O、D、B1都在直线y=x上P1ODNOB,NOBN1OB1, P1ODN1OB1, 点P1的坐标为()将OP1D沿直线y=x翻折,可得另一个满足条件的点P2(),综上所述,点P的坐标是()或()【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键20、(1)证明详
25、见解析;(2)S=56(m+1)2+152(m54);(2)2或1【解析】试题分析:(1)利用两点间的距离公式计算出AB=5,则AB=OA,则可根据“HL”证明ABCAOD;(2)过点B作直线BE直线y=m于E,作AFBE于F,如图,证明RtABFRtBCE,利用相似比可得BC=53(m+1),再在RtACB中,由勾股定理得AC2=AB2+BC2=25+259(m+1)2,然后证明AOBACD,利用相似的性质得SAOBSACD=(ABAC)2,而SAOB=152,于是可得S=56(m+1)2+152(m54);(2)作BHy轴于H,如图,分类讨论:当ABCD时,则ACD=CAB,由AOBACD
26、得ACD=AOB,所以CAB=AOB,利用三角函数得到tanAOB=2,tanACB=ABBC=3m+1,所以3m+1=2;当ADBC,则5=ACB,由AOBACD得到4=5,则ACB=4,根据三角函数定义得到tan4=34,tanACB=ABBC=3m+1,则3m+1=34,然后分别解关于m的方程即可得到m的值试题解析:(1)证明:A(0,5),B(2,1),AB=32+(5-1)2=5,AB=OA,ABBC,ABC=90,在RtABC和RtAOD中,AB=AOAC=AD,RtABCRtAOD;(2)解:过点B作直线BE直线y=m于E,作AFBE于F,如图,1+2=90,1+2=90,2=2
27、,RtABFRtBCE,ABBC=AFBE,即5BC=3m+1,BC=53(m+1),在RtACB中,AC2=AB2+BC2=25+259(m+1)2,ABCAOD,BAC=OAD,即4+OAC=OAC+5,4=5,而AO=AB,AD=AC,AOBACD,SAOBSACD=(ABAC)2=2525+259(m+1)2,而SAOB=1252=152,S=56(m+1)2+152(m54);(2)作BHy轴于H,如图,当ABCD时,则ACD=CAB,而AOBACD,ACD=AOB,CAB=AOB,而tanAOB=BHOH=2,tanACB=ABBC=553(m+1)=3m+1,3m+1=2,解得m
28、=1;当ADBC,则5=ACB,而AOBACD,4=5,ACB=4,而tan4=BHAH=34,tanACB=ABBC=3m+1,3m+1=34,解得m=2综上所述,m的值为2或1考点:相似形综合题21、(1);(2)至少需要30分钟后生才能进入教室(3)这次消毒是有效的【解析】(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(8,6)代入即可,从图上读出x的取值范围;药物燃烧后,设出y与x之间的解析式y=,把点(8,6)代入即可;(2)把y=1.6代入反比例函数解析式,求出相应的x;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,大于或等于
29、10就有效【详解】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k10)代入(8,6)为6=8k1k1= 设药物燃烧后y关于x的函数关系式为y=(k20)代入(8,6)为6=,k2=48药物燃烧时y关于x的函数关系式为(0 x8)药物燃烧后y关于x的函数关系式为(x8) (2)结合实际,令中y1.6得x30即从消毒开始,至少需要30分钟后生才能进入教室 (3)把y=3代入,得:x=4把y=3代入,得:x=16164=12所以这次消毒是有效的【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式22、(1)见解析(2)A-国学诵读(3)360人【解析】(1)根据统计图中C的人数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品记录与数据管理要求培训课件
- 福建省2024八年级数学上册第11章数的开方期末复习课件新版华东师大版
- 水彩梅花课件教学课件
- 糖尿病日宣传活动总结
- 车间事故应急处理
- 剖腹产产后护理超详细
- 好玩的梯子说课稿
- 安全教育在走廊和楼梯上
- 旅游规划品牌授权准则
- 商品砼合同书
- 国家开放大学《C语言程序设计》章节测试参考答案
- GB∕T 16754-2021 机械安全 急停功能 设计原则
- 工程结算的难点原因及其治理措施
- 挂篮施工安全教育培训
- 三角形钢管悬挑脚手架计算书
- 《管理能力提升系列》PPT课件.ppt
- 杭州市租房合同模板
- 部编版一年级下册语文单元教材分析及教学要点
- 渝建竣表格新表(精编版)
- (完整版)家具项目实施方案
- 优秀校长的政治素养与养成讲述
评论
0/150
提交评论