版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示下面有四个推断:年用水量不超
2、过180m1的该市居民家庭按第一档水价交费;年用水量不超过240m1的该市居民家庭按第三档水价交费;该市居民家庭年用水量的中位数在150180m1之间;该市居民家庭年用水量的众数约为110m1 其中合理的是( )ABCD2估计2的运算结果在哪两个整数之间()A0和1B1和2C2和3D3和43如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设CAB,那么拉线BC的长度为()ABCD4若关于x的方程=3的解为正数,则m的取值范围是( )AmBm且mCmDm且m5如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心,则折痕的长度为( )AB2CD6下列二次根式,最简
3、二次根式是( )A8B12C5D277如图,AB是O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使ADC与BDA相似,可以添加一个条件下列添加的条件中错误的是( ) AACDDABBADDECADABCDBDDAD2BDCD8八边形的内角和为()A180B360C1 080D1 4409下列计算正确的是( )Aa3a3=a9 B(a+b)2=a2+b2 Ca2a2=0 D(a2)3=a610在17月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A3月份B4月份C5月份D6月份二、填空题(共7小题,每小题3分,满分21分)11甲
4、乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_(填“甲”或“乙”)12如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,按此规律继续下去,则矩形ABnCnCn-1的面积为_13二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3An在y轴的正半轴上,点B1,B2,B3Bn在二次函数位于第一象限的图象上,点C1,C2,C3Cn在二次函数位于第二象限的
5、图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3四边形An1BnAnCn都是菱形,A0B1A1=A1B2A1=A2B3A3=An1BnAn=60,菱形An1BnAnCn的周长为 14如果,那么=_15如图,矩形ABCD中,AD=5,CAB=30,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是_16如图,在ABC中,ABACD,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:_,可以使得FDB与ADE相似.(只需写出一个)17如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是_三、
6、解答题(共7小题,满分69分)18(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5)()求二次函数的解析式及点A,B的坐标;()设点Q在第一象限的抛物线上,若其关于原点的对称点Q也在抛物线上,求点Q的坐标;()若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标19(5分)如图,以ABC的边AB为直径的O分别交BC、AC于F、G,且G是的中点,过点G作DEBC,垂足为E,交BA的延长线于点D(1)求证:DE是的O切线;(2)若AB=6,BG=4
7、,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长20(8分)如图1,在RtABC中,A90,ABAC,点D,E分别在边AB,AC上,ADAE,连接DC,点M,P,N分别为DE,DC,BC的中点(1)观察猜想图1中,线段PM与PN的数量关系是 ,位置关系是 ;(2)探究证明把ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断PMN的形状,并说明理由;(3)拓展延伸把ADE绕点A在平面内自由旋转,若AD4,AB10,请直接写出PMN面积的最大值21(10分)如图1,抛物线y1=ax1x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,
8、GMx轴于点M将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1(1)求抛物线y1的解析式;(1)如图1,在直线l上是否存在点T,使TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与AMG全等,求直线PR的解析式22(10分)如图,四边形ABCD的四个顶点分别在反比例函数与(x0,0mn)的图象上,对角线BD/y轴,且BDAC于点P已知点B的横坐标为1当m=1,n=20时若点P的纵坐标为2,求直线AB的函数表达式若点P是BD的中点,试判
9、断四边形ABCD的形状,并说明理由四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由23(12分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是32,两队共同施工6天可以完成(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?24(14分)如图,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,.(1)求直线的表达式;(2)若直线与矩形有公共点,求的取值范围;(3)直线与矩形没有公共点,直接写出的取值范围
10、.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】利用条形统计图结合中位数和中位数的定义分别分析得出答案【详解】由条形统计图可得:年用水量不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;年用水量超过240m1的该市居民家庭有(0.15+0.15+0.05)=0.15(万),100%=7%5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;5万个数据的中间是第25000和25001的平均数,该市居民家庭年用水量的
11、中位数在120-150之间,故此选项错误;该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确,故选B【点睛】此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键2、D【解析】先估算出的大致范围,然后再计算出2的大小,从而得到问题的答案【详解】253231,51原式=22=2,322故选D【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键3、B【解析】根据垂直的定义和同角的余角相等,可由CAD+ACD=90,ACD+BCD=90,可求得CAD=BCD,然后
12、在RtBCD中 cosBCD=,可得BC=.故选B点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键4、B【解析】解:去分母得:x+m3m=3x9,整理得:2x=2m+9,解得:x=,已知关于x的方程=3的解为正数,所以2m+90,解得m,当x=3时,x=3,解得:m=,所以m的取值范围是:m且m故答案选B5、C【解析】过O作OCAB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长【详解】过O作OCAB,交圆O于点D,连接OA,由折叠得到CD=O
13、C=OD=1cm,在RtAOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=cm,则AB=2AC=2cm故选C【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键6、C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:
14、被开方数不含分母;被开方数不含能开得尽方的因数或因式7、D【解析】解:ADC=ADB,ACD=DAB,ADCBDA,故A选项正确;AD=DE, ,DAE=B,ADCBDA,故B选项正确;AD2=BDCD,AD:BD=CD:AD,ADCBDA,故C选项正确;CDAB=ACBD,CD:AC=BD:AB,但ACD=ABD不是对应夹角,故D选项错误,故选:D考点:1圆周角定理2相似三角形的判定8、C【解析】试题分析:根据n边形的内角和公式(n-2)180 可得八边形的内角和为(8-2)180=1080,故答案选C.考点:n边形的内角和公式.9、D.【解析】试题分析:A、原式=a6,不符合题意;B、原式
15、=a2+2ab+b2,不符合题意;C、原式=1,不符合题意;D、原式=a6,符合题意,故选D考点:整式的混合运算10、B【解析】解:各月每斤利润:3月:7.5-4.53元,4月:6-2.53.5元,5月:4.5-22.5元,6月:3-1.51.5元,所以,4月利润最大,故选B二、填空题(共7小题,每小题3分,满分21分)11、甲【解析】乙所得环数的平均数为:=5,S2=+=+=16.4,甲的方差乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.12、或【解析】试题分析:AC=,因为矩形都相似,且每相邻两个矩形的相似比=,=21=2,=,
16、=,=故答案为考点:1相似多边形的性质;2勾股定理;3规律型;4矩形的性质;5综合题13、4n【解析】试题解析:四边形A0B1A1C1是菱形,A0B1A1=60,A0B1A1是等边三角形设A0B1A1的边长为m1,则B1(,);代入抛物线的解析式中得:,解得m1=0(舍去),m1=1;故A0B1A1的边长为1,同理可求得A1B2A2的边长为2,依此类推,等边An-1BnAn的边长为n,故菱形An-1BnAnCn的周长为4n考点:二次函数综合题14、【解析】试题解析: 设a=2t,b=3t, 故答案为:15、5【解析】作点A关于直线CD的对称点E,作EPAC于P,交CD于点Q,此时QA+QP最短
17、,由QA+QP=QE+PQ=PE可知,求出PE即可解决问题【详解】解:作点A关于直线CD的对称点E,作EPAC于P,交CD于点Q四边形ABCD是矩形,ADC=90,DQAE,DE=AD,QE=QA,QA+QP=QE+QP=EP,此时QA+QP最短(垂线段最短),CAB=30,DAC=60,在RtAPE中,APE=90,AE=2AD=10,EP=AEsin60=10=5故答案为5【点睛】本题考查矩形的性质、最短问题、锐角三角函数等知识,解题的关键是利用对称以及垂线段最短找到点P、Q的位置,属于中考常考题型16、或【解析】因为,, ,所以 ,欲使与相似,只需要与相似即可,则可以添加的条件有:A=B
18、DF,或者C=BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.17、1:4【解析】两个相似三角形对应边上的高的比为14,这两个相似三角形的相似比是1:4相似三角形的周长比等于相似比,它们的周长比1:4,故答案为:1:4.【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比.三、解答题(共7小题,满分69分)18、(1)y=x2+4x+5,A(1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M(3,8),N(2,3)【解析】(1)设
19、顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,m2+4m+5),则其关于原点的对称点Q(m,m24m5),再将Q坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】()设二次函数的解析式为y=a(x2)2+9,把C(0,5)代入得到a=1,y=(x2)2+9,即y=x2+4x+5,令y=0,得到:x24x5=0,解得x=1或5,A(1,0),B(5,0)()设点Q(m,m2+4m+5),则Q(m,m24m5)把
20、点Q坐标代入y=x2+4x+5,得到:m24m5=m24m+5,m=或(舍弃),Q(,)()如图,作MK对称轴x=2于K当MK=OA,NK=OC=5时,四边形ACNM是平行四边形此时点M的横坐标为1,y=8,M(1,8),N(2,13),当MK=OA=1,KN=OC=5时,四边形ACMN是平行四边形,此时M的横坐标为3,可得M(3,8),N(2,3)【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.19、(1)证明见解析;(1);(3)1.【解析】(1)要证明DE是的O切线,证明OGDE即可;(1)先证明GBAEBG,即可得出=,根据已知
21、条件即可求出BE;(3)先证明AGBCGB,得出BC=AB=6,BE=4.8再根据OGBE得出=,即可计算出AD.【详解】证明:(1)如图,连接OG,GB,G是弧AF的中点,GBF=GBA,OB=OG,OBG=OGB,GBF=OGB,OGBC,OGD=GEB,DECB,GEB=90,OGD=90,即OGDE且G为半径外端,DE为O切线;(1)AB为O直径,AGB=90,AGB=GEB,且GBA=GBE,GBAEBG,;(3)AD=1,根据SAS可知AGBCGB,则BC=AB=6,BE=4.8,OGBE,即,解得:AD=1【点睛】本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关
22、键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.20、 (1)PMPN, PMPN;(2)PMN是等腰直角三角形,理由详见解析;(3)【解析】(1)利用三角形的中位线得出PMCE,PNBD,进而判断出BDCE,即可得出结论,再利用三角形的中位线得出PMCE得出DPMDCA,最后用互余即可得出结论;(2)先判断出ABDACE,得出BDCE,同(1)的方法得出PMBD,PNBD,即可得出PMPN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,PMN的面积最大,进而求出AN,AM,即可得出MN最大AM+AN,最后用面积公式即可得出结论方法2、先判断出BD最大时,PMN的
23、面积最大,而BD最大是AB+AD14,即可【详解】解:(1)点P,N是BC,CD的中点,PNBD,PNBD,点P,M是CD,DE的中点,PMCE,PMCE,ABAC,ADAE,BDCE,PMPN,PNBD,DPNADC,PMCE,DPMDCA,BAC90,ADC+ACD90,MPNDPM+DPNDCA+ADC90,PMPN,故答案为:PMPN,PMPN,(2)由旋转知,BADCAE,ABAC,ADAE,ABDACE(SAS),ABDACE,BDCE,同(1)的方法,利用三角形的中位线得,PNBD,PMCE,PMPN,PMN是等腰三角形,同(1)的方法得,PMCE,DPMDCE,同(1)的方法得
24、,PNBD,PNCDBC,DPNDCB+PNCDCB+DBC,MPNDPM+DPNDCE+DCB+DBCBCE+DBCACB+ACE+DBCACB+ABD+DBCACB+ABC,BAC90,ACB+ABC90,MPN90,PMN是等腰直角三角形,(3)方法1、如图2,同(2)的方法得,PMN是等腰直角三角形,MN最大时,PMN的面积最大,DEBC且DE在顶点A上面,MN最大AM+AN,连接AM,AN,在ADE中,ADAE4,DAE90,AM2,在RtABC中,ABAC10,AN5,MN最大2+57,SPMN最大PM2MN2(7)2方法2、由(2)知,PMN是等腰直角三角形,PMPNBD,PM最
25、大时,PMN面积最大,点D在BA的延长线上,BDAB+AD14,PM7,SPMN最大PM272【点睛】本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.21、(1)y1=-x1+ x-;(1)存在,T(1,),(1,),(1,);(3)y=x+或y=【解析】(1)应用待定系数法求解析式;(1)设出点T坐标,表示TAC三边,进行分类讨论;(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与AMG全等,分类讨论对应边相等的可能性即可【详解】解:(1)由已知,c=,将B(1,0)代入,得:a=0,解得a=,抛物线解析式为y1=x1- x+,抛物线y1平移后得到
26、y1,且顶点为B(1,0),y1=(x1)1,即y1=-x1+ x-;(1)存在,如图1:抛物线y1的对称轴l为x=1,设T(1,t),已知A(3,0),C(0,),过点T作TEy轴于E,则TC1=TE1+CE1=11+()1=t1t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,当TC=AC时,t1t+=,解得:t1=,t1=;当TA=AC时,t1+16=,无解;当TA=TC时,t1t+=t1+16,解得t3=;当点T坐标分别为(1,),(1,),(1,)时,TAC为等腰三角形;(3)如图1:设P(m,),则Q(m,),Q、R关于x=1对称R(1m,),当点P在直线l左
27、侧时,PQ=1m,QR=11m,PQR与AMG全等,当PQ=GM且QR=AM时,m=0,P(0,),即点P、C重合,R(1,),由此求直线PR解析式为y=x+,当PQ=AM且QR=GM时,无解;当点P在直线l右侧时,同理:PQ=m1,QR=1m1,则P(1,),R(0,),PQ解析式为:y=;PR解析式为:y=x+或y=【点睛】本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键22、(1);四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.【解析】(1)先确定出点A,B坐标,再利用待定
28、系数法即可得出结论;先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论【详解】(1)如图1,反比例函数为,当时,当时,设直线的解析式为, , ,直线的解析式为;四边形是菱形,理由如下:如图2,由知,轴,点是线段的中点,当时,由得,由得,四边形为平行四边形,四边形是菱形;(2)四边形能是正方形,理由:当四边形是正方形,记,的交点为,,当时, ,.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键23、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品记录与数据管理要求培训课件
- 福建省2024八年级数学上册第11章数的开方期末复习课件新版华东师大版
- 水彩梅花课件教学课件
- 糖尿病日宣传活动总结
- 车间事故应急处理
- 剖腹产产后护理超详细
- 好玩的梯子说课稿
- 安全教育在走廊和楼梯上
- 旅游规划品牌授权准则
- 商品砼合同书
- 0-6岁儿童健康管理服务规范(第三版)
- Unit 7 《Chinese festivals》教学设计-优秀教案
- #110kV变电站一次验收规范#
- 2023年江苏省镇江市九年级上学期数学期中考试试卷含答案
- TIMAAMM 001-2023 蒙医病证分类与代码
- 《网络安全导论》
- 基于核心素养的课程建构
- 世界(全球)审计史
- 运动安全与健康知到章节答案智慧树2023年浙江大学
- 全过程跟踪审计和结算审计服务方案技术标投标方案
- 煤矿掘进工培训教案
评论
0/150
提交评论