




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,半径为的中,弦,所对的圆心角分别是,若,则弦的长等于( )ABCD2在平面直角坐标系中,已知点A(4,2)
2、,B(6,4),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是()A(2,1)B(8,4)C(8,4)或(8,4)D(2,1)或(2,1)3下列计算正确的是ABCD4如图,M是ABC的边BC的中点,AN平分BAC,BNAN于点N,且AB=10,BC=15,MN=3,则AC的长是()A12B14 C16D185点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A关于x轴对称B关于y轴对称C绕原点逆时针旋转D绕原点顺时针旋转6二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )ABCD7已知O的半径为13,弦ABCD,AB=
3、24,CD=10,则四边形ACDB的面积是()A119B289C77或119D119或28982022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( )A1210B1.210C1.210D0.12109计算(ab2)3(ab)2的结果是()Aab4 Bab4 Cab3 Dab310在,0,1,这四个数中,最小的数是( )AB0CD111为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:6,1,x,2,1,1若这组数据
4、的中位数是1,则下列结论错误的是()A方差是8B极差是9C众数是1D平均数是112下列运算正确的是( )Aa2a3a6 Ba3+ a3a6 C|a2|a2 D(a2)3a6二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在ABC中,B40,C45,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则DAE_14如图,为了测量河宽AB(假设河的两岸平行),测得ACB30,ADB60,CD60m,则河宽AB为 m(结果保留根号)15如图是一个几何体的三视图(图中尺寸单位:),根据图中数据计算,这个几何体的表面积为_16计算:=_.17圆锥体的底面周长为6,侧面积为12,则
5、该圆锥体的高为 18化简:=_;=_;=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨? 目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?20(6分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5
6、倍,结果提前4天完成了该项绿化工程该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?21(6分)如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点(1)求证:;(2)当时,求四边形AECF的面积22(8分)计算:+26tan3023(8分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C求双曲线解析式;点P在x轴上,如果ACP的面积为5,求点P的坐标.24(10分)如图1,在平面直角坐
7、标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180,得到新的抛物线C(1)求抛物线C的函数表达式;(2)若抛物线C与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C上的对应点P,设M是C上的动点,N是C上的动点,试探究四边形PMPN能否成为正方形?若能,求出m的值;若不能,请说明理由25(10分)在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点求的值;横、纵坐标都是
8、整数的点叫做整点记图象在点,之间的部分与线段,围成的区域(不含边界)为当时,直接写出区域内的整点个数;若区域内恰有4个整点,结合函数图象,求的取值范围26(12分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹已知:如图,线段a,h求作:ABC,使AB=AC,且BAC=,高AD=h27(12分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作P,则称点Q为P的“关联点”,P为点Q的“关联圆”(1)已知O的半径为1,在点E(1,1),F(,),M(0,-1)中,O的“关联点”为_;(2)若点P(2,0),点Q(3,n),Q为点P的“关联圆”,且Q的半径为,求n的值;(3
9、)已知点D(0,2),点H(m,2),D是点H的“关联圆”,直线yx+4与x轴,y轴分别交于点A,B若线段AB上存在D的“关联点”,求m的取值范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】作AHBC于H,作直径CF,连结BF,先利用等角的补角相等得到DAE=BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AHBC,根据垂径定理得CH=BH,易得AH为CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解解:作AHBC于H,作直径CF,连结BF,如图,BAC+EAD=120,
10、而BAC+BAF=120,DAE=BAF,弧DE弧BF,DE=BF=6,AHBC,CH=BH,CA=AF,AH为CBF的中位线,AH=BF=1,BC2BH2故选A“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半也考查了垂径定理和三角形中位线性质2、D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案【详解】点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把ABO缩小,点A的对应点A的坐标是:(-2,1)或(2,-1)故选D【点睛】此题考查了位
11、似图形与坐标的关系此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于k3、C【解析】根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可【详解】、与不是同类项,不能合并,此选项错误;、,此选项错误;、,此选项正确;、,此选项错误故选:【点睛】此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键4、C【解析】延长线段BN交AC于E.AN平分BAC,BAN=EAN.在ABN与AEN中,BAN=EAN,AN=AN,ANB=ANE=90,ABNAEN(ASA),AE=A
12、B=10,BN=NE.又M是ABC的边BC的中点,CE=2MN=23=6,AC=AE+CE=10+6=16.故选C.5、C【解析】分析:根据旋转的定义得到即可详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90得到点B,故选C点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角6、D【解析】根据抛物线和直线的关系分析.【详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【点睛】考核知识点:反比例函数图象.7、D【解析】分两种情况进行讨论:弦AB和C
13、D在圆心同侧;弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.【详解】解:当弦AB和CD在圆心同侧时,如图1,AB=24cm,CD=10cm,AE=12cm,CF=5cm,OA=OC=13cm,EO=5cm,OF=12cm,EF=12-5=7cm;四边形ACDB的面积 当弦AB和CD在圆心异侧时,如图2,AB=24cm,CD=10cm,.AE=12cm,CF=5cm,OA=OC=13cm,EO=5cm,OF=12cm,EF=OF+OE=17cm.四边形ACDB的面积四边形ACDB的面积为119或289.故选:D.【点睛】本题考查了勾股定理和垂径定理的
14、应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.8、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.【详解】数据12000用科学记数法表示为1.2104,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.9、B【解析】根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则
15、进行计算即可得,(-ab2)3(-ab)2=-a3b6a2b2=-ab4,故选B.10、D【解析】试题分析:因为负数小于0,正数大于0,正数大于负数,所以在,0,1,这四个数中,最小的数是1,故选D考点:正负数的大小比较11、A【解析】根据题意可知x=-1,平均数=(-6-1-1-1+2+1)6=-1,数据-1出现两次最多,众数为-1,极差=1-(-6)=2,方差= (-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2=2故选A12、C【解析】根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相
16、减,对各选项计算后利用排除法求解【详解】a2a3a5,故A项错误;a3+ a32a3,故B项错误;a3+ a3- a6,故D项错误,选C.【点睛】本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.二、填空题:(本大题共6个小题,每小题4分,共24分)13、10【解析】根据线段的垂直平分线得出AD=BD,AE=CE,推出B=BAD,C=CAE,求出BAD+CAE的度数即可得到答案【详解】点D、E分别是AB、AC边的垂直平分线与BC的交点,AD=BD,AE=CE,B=BAD,C=CAE,B=40,C=45,B+C=85,BAD+CAE=85,DAE=BAC-(BAD+CAE)=180-85
17、-85=10,故答案为10【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键14、【解析】解:ACB=30,ADB=60,CAD=30,AD=CD=60m,在RtABD中,AB=ADsinADB=60=(m).故答案是:.15、【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=
18、rl+r2=26+22=16(cm2)故答案为:16点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查16、2【解析】利用平方差公式求解,即可求得答案【详解】=()2-()2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算此题难度不大,注意掌握平方差公式的应用17、【解析】试题分析:用周长除以2即为圆锥的底面半径;根据圆锥的侧面积=侧面展开图的弧长母线长可得圆锥的母线长,利用勾股定理可得圆锥的高试题解析:圆锥的底面周长为6, 圆锥的底面半径为 62=3, 圆锥的侧面积=侧面展开图的弧长母线长,母线长=2126=4, 这个圆锥的高是考点:圆锥的计算1
19、8、4 5 5 【解析】根据二次根式的性质即可求出答案【详解】原式=4;原式=5;原式=5,故答案为:4;5;5【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】(1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车
20、一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可【详解】(1)解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,依题可得: ,解得: .答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨.(2)解:设大货车有m辆,则小货车10-m辆,依题可得:4m+(10-m)33m010-m0解得:m10,m=8,9,10;当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为W=130m+100(10-m)=30m+1000,k=300,W随x的增大而增大,当m=8时,运费最少,W=
21、1308+1002=1240(元),答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案20、 (1)2000;(2)2米【解析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:= 4解得:x=2000,经检验,x=200
22、0是原方程的解;答:该绿化项目原计划每天完成2000平方米; (2)设人行道的宽度为x米,根据题意得,(203x)(82x)=56 解得:x=2或x=(不合题意,舍去)答:人行道的宽为2米21、(1)见解析;(2)【解析】(1)根据平行四边形的性质得出AB=CD,BC=AD,B=D,求出BE=DF,根据全等三角形的判定推出即可;(2)求出ABE是等边三角形,求出高AH的长,再求出面积即可【详解】(1)证明:四边形ABCD是平行四边形,点E、F分别是BC、AD的中点,在和中,();(2)作于H,四边形ABCD是平行四边形,点E、F分别是BC、AD的中点,四边形AECF是平行四边形,四边形AECF
23、是菱形,即是等边三角形,由勾股定理得:,四边形AECF的面积是【点睛】本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键22、10 【解析】根据实数的性质进行化简即可计算.【详解】原式=9-1+2-+6=10-=10 【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.23、(1);(2)(,0)或【解析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出ACP的面积,可得到关于x的方程,解
24、方程可求得P点的坐标【详解】解:(1)把A(2,n)代入直线解析式得:n=3, A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=(2)对于直线y=x+2,令y=0,得到x=-4,即C(-4,0)设P(x,0),可得PC=|x+4|ACP面积为5,|x+4|3=5,即|x+4|=2,解得:x=-或x=-,则P坐标为或24、(1);(2)2m;(1)m=6或m=1【解析】(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,由此即可解决问题;(2)由题意抛物线C的顶点坐标为(2m,4),设抛物线C的解析式为,由,消去y得到,由题意,抛物线C与
25、抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;(1)情形1,四边形PMPN能成为正方形作PEx轴于E,MHx轴于H由题意易知P(2,2),当PFM是等腰直角三角形时,四边形PMPN是正方形,推出PF=FM,PFM=90,易证PFEFMH,可得PE=FH=2,EF=HM=2m,可得M(m+2,m2),理由待定系数法即可解决问题;情形2,如图,四边形PMPN是正方形,同法可得M(m2,2m),利用待定系数法即可解决问题【详解】(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,抛物线C的函数表达式为(2)由题意抛物线C的顶点坐标为
26、(2m,4),设抛物线C的解析式为,由,消去y得到 ,由题意,抛物线C与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2m,满足条件的m的取值范围为2m(1)结论:四边形PMPN能成为正方形理由:1情形1,如图,作PEx轴于E,MHx轴于H由题意易知P(2,2),当PFM是等腰直角三角形时,四边形PMPN是正方形,PF=FM,PFM=90,易证PFEFMH,可得PE=FH=2,EF=HM=2m,M(m+2,m2),点M在上,解得m=1或1(舍弃),m=1时,四边形PMPN是正方形情形2,如图,四边形PMPN是正方形,同法可得M(m2,2m),把M(m2,2m)代入中,解得m=6或0(舍弃),m=6时,四边形PMPN是正方形综上所述:m=6或m=1时,四边形PMPN是正方形25、(1)4;(2)3个(1,0),(2,0),(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子会员转让协议书
- 不与退货协议书范本
- 2025年03月江苏省省属事业单位统一人员(710人)笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年03月山东省社会工作联合会公开招聘4人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年03月天津和平区司法医学鉴定中心法医助理岗(北方辅医外包项目)公开招聘笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 太阳能热发电系统项目风险分析和评估报告
- 大理白族自治州洱源县2025届六年级下学期小升初真题数学试卷含解析
- 石家庄人民医学高等专科学校《人体影像解剖学实验》2023-2024学年第二学期期末试卷
- 怀化学院《化工制图与AutoCAD》2023-2024学年第二学期期末试卷
- 郑州职业技术学院《工程岩体力学》2023-2024学年第二学期期末试卷
- 防控医疗纠纷课件
- 陕西省扶风县法门小学-小学班主任带班方略【课件】
- 2025年超高功率大吨位电弧炉项目建议书
- 宠物殡葬创新创业
- 2025年第三届天扬杯建筑业财税知识竞赛题库附答案(801-900题)
- 2024年黑龙江出版集团招聘笔试真题
- 2024年4月27日浙江省事业单位招聘考试《职业能力倾向测验》真题及答案
- 【初中历史】辽宋夏金元时期经济的繁荣 课件 2024-2025学年统编版七年级历史下册
- 2025-2030中国橄榄球行业市场全景调研及投资价值评估咨询报告
- 砌体结构检测试题及答案
- DB32T 5061.1-2025 中小学生健康管理技术规范 第1部分:心理健康
评论
0/150
提交评论