版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、沪科版八年级数学下册第19章 四边形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知正多边形的一个外角等于45,则该正多边形的内角和为()A135B360C1080D14402、如图,菱形中,
2、以为圆心,长为半径画,点为菱形内一点,连,若,且,则图中阴影部分的面积为( )ABCD3、垦区小城镇建设如火如荼,小红家买了新楼爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式( )A1种B2种C3种D4种4、如图,在ABC中,点E,F分别是AB,AC的中点已知B55,则AEF的度数是()A75B60C55D405、下列说法中,不正确的是( )A四个角都相等的四边形是矩形B对角线互相平分且平分每一组对角的四边形是菱形C正方形的对角线所在的直线是它的对称轴D一组对边相等,另一组对边平行的四边形是平行四边形6、在ABCD中,AC=24,BD=38,AB=
3、m,则m的取值范围是( )A24m39B14m62C7m31D7m127、下列四个命题中,正确的是( )A对角线相等的四边形是矩形B有一个角是直角的四边形是矩形C两组对边分别相等的四边形是矩形D四个角都相等的四边形是矩形8、在锐角ABC中,BAC60,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:NPMP;AN:ABAM:AC;BN2AN;当ABC60时,MNBC,一定正确的有( )ABCD9、若菱形的两条对角线长分别为10和24,则菱形的面积为()A13B26C120D24010、如图,在中,AD平分,E是AD中点,若,则CE的长为( )ABCD第卷(非选择题 70分)二、填
4、空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD中,B45,AD8,E、H分别为边AB、CD上一点,将ABCD沿EH翻折,使得AD的对应线段FG经过点C,若FGCD,CG4,则EF的长度为 _2、如图,直线 l上有三个正方形A、B、C,若正方形A、C的边长分别为5和7,则正方形 B的面积为_3、如图,BE,CD是ABC的高,BE,CD相交于点O,若,则_(用含的式子表示)4、在四边形ABCD中,若AB/CD,BC_AD,则四边形ABCD为平行四边形5、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若A
5、B8,AD16,BE4,则MC的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,已知在RtABC中,ACB90,CD是斜边AB上的中线,点E是边BC延长线上一点,连接AE、DE,过点C作CFDE于点F,且DFEF (1)求证:ADCE (2)若CD5,AC6,求AEB的面积2、如图,在等腰三角形ABC中,ABBC,将等腰三角形ABC绕顶点B按逆时针方向旋转角a到的位置,AB与相交于点D,AC与分别交于点E,F(1)求证:BCF;(2)当Ca时,判定四边形的形状并说明理由3、如图,已知ABC中,D是AB上一点,ADAC,AECD,垂足是E,F是BC的中点,求证:BD2EF4、角的平
6、分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上小强证明该定理的步骤如下:已知:如图1,点P在上,于点D,于点E,且求证:是的平分线证明:通过测量可得,是的平分线(1)关于定理的证明,下面说法正确的是( )A小强用到了从特殊到一般的方法证明该定理B只要测量一百个到角的两边的距离相等的点都在角的平分线上,就能证明该定理C不能只用这个角,还需要用其它角度进行测量验证,该定理的证明才完整D小强的方法可以用作猜想,但不属于严谨的推理证明(2)利用小强的已知和求证,请你证明该定理;(3)如图2,在五边形中,在五边形内有一点F,使得直接写出的度数5、如图,在ABC中,P是BC边的中点,BAP
7、 = (为锐角)把点P绕点A顺时针旋转得到点Q,旋转角为2(1)在图中求作以A,B,P,D为顶点的四边形,使得点Q是该四边形AD边的中点;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若AD = BC,探究直线PQ与直线BD的 位置关系-参考答案-一、单选题1、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.2、C【分
8、析】过点P作交于点M,由菱形得,由,得,故可得,根据SAS证明,求出,即可求出【详解】如图,过点P作交于点M,四边形ABCD是菱形,在与中,在中,即,解得:,故选:C【点睛】此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键3、C【分析】从所给的选项中取出一些进行判断,看其所有内角和是否为360,并以此为依据进行求解【详解】解:正三角形每个内角是60,能被360整除,所以能单独镶嵌成一个平面;正方形每个内角是90,能被360整除,所以能单独镶嵌成一个平面;正五边形每个内角是108,不能被360整除,所以不能单独镶嵌成一个平面;正六边形每个内角是120,能被
9、360整除,所以能单独镶嵌成一个平面故只购买一种瓷砖进行平铺,有3种方式故选:C【点睛】本题主要考查了平面镶嵌解这类题,根据组成平面镶嵌的条件,逐个排除求解4、C【分析】证EF是ABC的中位线,得EFBC,再由平行线的性质即可求解【详解】解:点E,F分别是AB,AC的中点,EF是ABC的中位线,EFBC,AEF=B=55,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键5、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对
10、角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键6、C【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键7、D【分析】根据矩形的判定定理判断即可【详解】解:A.
11、 对角线相等的平行四边形是矩形,原选项说法错误,不符合题意;B. 有一个角是直角的平行四边形是矩形,原选项说法错误,不符合题意;C. 两组对边分别相等的四边形是平行四边形,原选项说法错误,不符合题意;D. 四个角都相等的四边形是矩形,原选项说法正确,符合题意;故选:D【点睛】本题考查矩形的判定定理,熟记矩形的判定定理是解题关键8、C【分析】利用直角三角形斜边上的中线的性质即可判定正确;利用含30度角的直角三角形的性质即可判定正确,由勾股定理即可判定错误;由等边三角形的判定及性质、三角形中位线定理即可判定正确【详解】CM、BN分别是高CMB、BNC均是直角三角形点P是BC的中点PM、PN分别是两
12、个直角三角形斜边BC上的中线故正确BAC=60ABN=ACM=90BAC=30AB=2AN,AC=2AMAN:AB=AM:AC=1:2即正确在RtABN中,由勾股定理得:故错误当ABC=60时,ABC是等边三角形CMAB,BNACM、N分别是AB、AC的中点MN是ABC的中位线MNBC故正确即正确的结论有故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键9、C【分析】根据菱形的面积公式即可得到结论【详解】解:菱形的两条对角线长分别为10和24,菱形的面积为,故选:C【点
13、睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的面积公式10、B【分析】根据三角形内角和定理求出BAC,根据角平分线的定义DAB=B,求出AD,根据直角三角形的性质解答即可【详解】解:ACB=90,B=30,BAC=90-30=60,AD平分BAC,DAB=BAC=30,DAB=B,AD=BD=a,在RtACB中,E是AD中点,CE=AD=,故选: B【点睛】本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键二、填空题1、【分析】延长CF与AB交于点M,由平行四边形的性质得BC长度,GMAB,由折叠性质得GF,EFM,进而得FM,再根据EFM是
14、等腰直角三角形,便可求得结果【详解】解:延长CF与AB交于点M,FGCD,ABCD,CMAB,B=45,BC=AD=8,CM=4,由折叠知GF=AD=8,CG=4,MF=CM-CF=CM-(GF-CG)=4-4,EFC=A=180-B=135,MFE=45,EF=MF=(4-4)=8-4故答案为:8-4【点睛】本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形2、74【分析】证,推出,则,再证,代入求出即可【详解】解:如图,正方形,的边长分别为5和7,由正方形的性质得:,在和中,正方形的面积为,故答案为:74【点睛】本题考查了全等三角形的判定与性质、正
15、方形的性质等知识,解题的关键是熟练掌握正方形的性质,证明3、180【分析】根据三角形的高的定义可得AEO=ADO=90,再根据四边形在内角和为360解答即可【详解】解:BE,CD是ABC的高,AEO=ADO=90,又,BOC=DOE=3609090=180,故答案为:180【点睛】本题考查三角形的高、四边形的内角和、对顶角相等,熟知四边形在内角和为360是解答的关键4、【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题【详解】解:根据两组对边分别平行的四边形是平行四边形可知:AB/CD,BC/AD,四边形ABCD为平行四边形故答案为:/【点睛】本题考查了平行四边形的
16、判定,熟练掌握平行四边形的判定方法是解题的关键5、10【分析】过E作EFAD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出ANMENM,可得AM=EM,根据矩形ABCD,得出B=A=D=90,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可【详解】解:过E作EFAD于F,矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,ANMENM,AM=EM,矩形ABCD,B=A=D=90, FEAD,AFE=B=A=90,四边形ABEF为矩形,AF=BE=4,FE=AB=8,设AM=EM=m,F
17、M=m-4在RtFEM中,根据勾股定理,即,解得m=10,MD=AD-AM=16-10=6,在RtMDC中,MC=故答案为10【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键三、解答题1、(1)见解析;(2)39【分析】(1)首先根据CFDE,DFEF得出CF为DE的中垂线,然后根据垂直平分线的性质得到CDCE,然后根据直角三角形斜边上的中线等于斜边的一半得到CDAD,即可证明ADCE;(2)由(1)得CDCE=AB=5,由勾股定理求出BC,然后结合三角形的面积公式进行计算【详解】(1)证明:DFEF 点F为DE的中点 又CFDE
18、 CF为DE的中垂线CDCE又在RtABC中,ACB90,CD是斜边AB上的中线CD=ADADCE(2)解:由(1)得CDCE=5 AB=10 在RtABC中,BC=8EB=EC+BC=13 【点睛】此题考查了垂直平分线的判定和性质,直角三角形性质,三角形面积公式等知识,解题的关键是熟练掌握垂直平分线的判定和性质,直角三角形性质,三角形面积公式2、(1)见解析;(2)菱形,见解析【分析】(1)根据等腰三角形的性质得到AB=BC,A=C,由旋转的性质得到A1B=AB=BC,A=A1=C,A1BD=CBC1,根据全等三角形的判定定理得到BCFBA1D;(2)由(1)可知=A=C=a,B=B=AB=
19、BC通过证明FBC=可得 BC,利用EC=C=180推出EC+=180 得到BCE从而证明四边形为平行四边形再利用B=BC可证明四边形为菱形【详解】(1)证明:等腰三角形ABC旋转角a得到BD=FBC=a=A=C B=B=AB=BCBCF(ASA) (2)解:四边形为菱形理由:C=a由(1)可知=A=C=a B=B=AB=BC又 BD=FBC=a FBC=BC EC=C=180EC+=180 BCE四边形为平行四边形又B=BC 四边形为菱形【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键3、见解析【分析】先证明 再证明EF是CDB的中位线,从而可得结论.【详解】证明:ADAC,AECDCEEDF是BC的中点EF是CDB的中位线BD2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.4、(1)D;(2)证明见详解;(3)【分析】(1)根据题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题申报参考:闽派古琴的历史、现状及文献研究
- 课题申报参考:面向学生创造力培育的场馆学习环境测评体系与优化机制研究
- 课题申报参考:面向产品个性化定制的共享制造资源协同调度优化理论研究
- 二零二五年度智能电网信息化系统运维与电力市场服务合同3篇
- 二零二五年度党政机关会议酒店住宿及会议场地租赁合同4篇
- 2025年度土地承包经营权续包合同示范文本4篇
- 2025年度个人个人房产买卖合同(含装修及配套设施)2篇
- 2025年度钢材行业投资合作开发合同
- 2025年个人购房合同(含房屋保险服务)
- 二零二五版南京房地产抵押物拍卖合同4篇
- 海员的营养-1315医学营养霍建颖等讲解
- 《现代根管治疗术》课件
- 肩袖损伤的护理查房课件
- 2023届北京市顺义区高三二模数学试卷
- 公司差旅费报销单
- 我国全科医生培训模式
- 2021年上海市杨浦区初三一模语文试卷及参考答案(精校word打印版)
- 八年级上册英语完形填空、阅读理解100题含参考答案
- 八年级物理下册功率课件
- DBJ51-T 188-2022 预拌流态固化土工程应用技术标准
- 《长津湖》电影赏析PPT
评论
0/150
提交评论