青羊沟水电站水锤及调节保证计算_第1页
青羊沟水电站水锤及调节保证计算_第2页
青羊沟水电站水锤及调节保证计算_第3页
青羊沟水电站水锤及调节保证计算_第4页
青羊沟水电站水锤及调节保证计算_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、青羊沟水电站水锤及调节保证计算1概述青羊沟水电站工程位于甘肃省酒泉市肃北蒙古族自治县鱼儿红乡境内的疏勒河干流上,为甘肃省境内疏勒河干流昌马水库以上河段水电开发规划中的梯级电站之一。电站厂房距玉门镇约109km,距玉门市昌马乡38km,距肃北县鱼儿红乡政府约52km,对外交通便利。电站采用有压引水式开发方式,是以发电为主的日调节中型水电站工程,电站额定水头116m。主厂房装设2台单机容量为23MW(以下称大机)和1台单机容量为10MW(以下称小机)共3台混流式水轮发电机组,并要求大、小机在运行水头介于116m至范围内能超额定出力运行,其超额定出力范围为10%(机组具有10%的超发能力),即大机为

2、26.356 MW、小机为11.583MW。电站保证出力为10.23MW,多年平均年发电量为2.131亿kW.h,装机年利用小时数为3805h。电站引水发电系统由进水口、引水发电隧洞、调压井、压力管道主管、压力管道支管组成,水流通过水轮发电机组后由尾水渠流入河道。引水发电隧洞长,设计流量m3/s,隧洞为圆形有压洞,纵坡1/265.837,洞径D=m,设计流速m/s。调压井布置于副厂房上游侧,调压井型式为阻抗式调压井,竖井内径m,阻抗孔直径m,底部高程2286.00m,顶部高程233m。调压井底部垂直接压力管道主管,压力主管由垂直管、弯管和水平管组成,其中垂直管长,弯管长(R=12m,a=900

3、),水平管长,主管总长310m,主管内径m(暂定),设计流速m/s。压力主管末端3条支管为 “卜”型布置,1#大机支管长31m,内径,2#大机支管长24m,内径,3#小机支管长30m,内径。厂内安装2台23MW和1台10MW共3台混流式水轮发电机组,水轮机型号分别为HLA685LJ177和HLA685LJ122;单机引用流量m3/s和10m3/s,额定水头116m。本电站采用的主接线方案为:发电机侧采用两机一变、一机一变10kV单元接线,110kV侧采用单母线接线,35kV侧采用单母线接线。电力系统要求青羊沟水电站的发电机具有功率因数为0.9的进相运行能力。2调节保证计算意义21调节保证计算的

4、任务水锤及调节保证计算的任务就是按照水电站过水系统和水轮发电机组的特性,合理选择开度的调节时间和调节规律,进行水锤和机组转速变化计算,使二者的数值限制在允许范围内,并力求使水锤压强最小。22调节保证计算的内容水锤及调节保证计算的内容包括:1)当丢弃全部负荷或部分负荷时,转速的最大升高值、压力水管和蜗壳内的压强最大升高值及最大降低值、尾水管内的最大真空值。2)当增加全部负荷或部分负荷时,转速的最大降低值、压力水管和蜗壳内的压强最大降低值。机组调节保证计算1)机组最大转速升高按水力发电厂机电设计技术规范,当机组容量占电力系统工作总容量的比重不大,或不担负调频任务时,机组最大转速升高相对值宜小于60

5、%。本电站机组容量占电力系统工作总容量的比重不大,可以考虑对本电站定为max60%。2)蜗壳最大动态水压力按上述规范,对额定水头在100m300m的水电站,蜗壳水压力升高相对值 max可在30%25%之间选择。本电站额定水头116m,故可以选择max30%。本电站水库正常蓄水位为m,校核洪水位为,蜗壳进口中心高程为,额定水头为m,因此蜗壳设计最大动态水压力 Hmax2325-+0.3116=m,蜗壳校核最大动态水压力 Hmax-116=m。3)尾水管进口最大真空度按上述规范,尾水管进口最大真空度应小于8.0m。但本电站海拔在2000多米,尾水管进口最大真空度宜适当小于7.0m。)的历时。本电站

6、有超发10%的要求,2009年11月甲方要求大机在118m及以上时超发10%,小机在116m及以上时超发10%。为了满足上列要求,取模型导叶开度基值为27,已经位于5%出力限制线上。计算表明模型导叶开度大于27时,水轮机流量增加,但由于水头和效率下降,机组出力增加甚少,甚至不增加。因此模型导叶开度基值不宜大于27。表6.1 额定水头,三台机导叶全开初始工况工 况起始转速r/min起始导叶开度起始水头m起始流量m3/s起始功率MW机组号上游,下游,三台机导叶全开123注:模型导叶开度基值取为27表6.2 直线关闭规律时,三台机同时事故甩全负荷过渡过程计算结果序号起始工况直线关闭时间s最大转速Hz

7、最大转速升高蜗壳进口最大水压力mH2O蜗壳末端最大水压力mH2O蜗壳末端最大水压力升高尾水管进口最低水压力 mH2O机组号1151232161233171234181235110122736112123由表6.2可见,只有当直线关闭时间小于等于6s时,机组最大转速升高小于允许值,但蜗壳最大水压力升高大大超过允许值;只有在直线关闭时间大于等于12s时,蜗壳最大水压力升高小于允许值,但机组最大转速升高超过允许值。因此本电站不可能采用直线关闭规律。本电站必须采用分段关闭规律,对表6.1所示工况进行分段关闭规律优化计算,计算结果见表6.3表6.5。导叶关闭规律优化计算时采用1号机的转速升高和水压力升高

8、之和为目标函数。本报告中,第一段关闭时间Ts1定义为导叶以第一段关闭速度(快关)从全开关至全关的历时;第二段关闭时间Ts2定义为导叶以第二段关闭速度(慢关)从全开关至全关的历时;分段点Y12定义为导叶关闭速度从第一段速度(快关)转为第二段速度(慢关)时的导叶开度值。表6.3 1号机Ts1=4s时,分段关闭规律优化计算结果序号第一段关闭时间s第二段关闭时间s分段点机组转速升高蜗壳水压力升高尾水管进口最低水压力mH2O目标函数123450.52867891011121314151648表6.4 1号机Ts1=5s时,分段关闭规律优化计算结果序号第一段关闭时间s第二段关闭时间s分段点机组转速升高蜗壳

9、水压力升高尾水管进口最低水压力mH2O目标函数12345678910111213141516表6.5 1号机Ts1=6s时,分段关闭规律优化计算结果序号第一段关闭时间s第二段关闭时间s分段点机组转速升高蜗壳水压力升高尾水管进口最低水压力mH2O目标函数1230.88045678910111213141516由表6.3可见,可以选取关闭规律为4-14-0.6,即第一段关闭时间Ts1=4s,第二段关闭时间Ts2=14s,分段点开度Y12=0.6;由表6.4可以选取关闭规律5-15-0.5,即第一段关闭时间Ts1=5s,第二段关闭时间Ts2=15s,分段点开度Y12=0.5;由表6.5可以选取关闭规

10、律6-12-0.5,即第一段关闭时间Ts1=6s,第二段关闭时间Ts2=12s,分段点开度Y12=0.5。比较而言,5-15-0.5的机组转速升高略低,有一定的余量,因此建议本电站采用分段关闭规律5-15-0.5。即关闭规律:Ts1=5s;Ts2=15s;Y12=0.5。2009年11月甲方反馈意见,希望将机组最大转速升高控制在55%左右,为此将导叶关闭规律改为5-10-0.5,即关闭规律:Ts1=5s;Ts2=10s;Y12=0.5。以下计算均采用导叶关闭规律5-10-0.5。三台机同时事故甩负荷过渡过程计算不同初始工况时,三台机同时事故甩全负荷后过渡过程计算结果见表6.7,相应初始工况见表

11、6.6。表6.6 初始工况序号工况起始转速r/min起始导叶开度起始水头m起始流量m3/s起始功率MW机组号1上游,下游,三台机带额定负荷1232上游,下游,三台机导叶全开或带额定负荷1233上游,下游2198.7,三台机导叶全开或带额定负荷1234上游,下游,三台机带额定负荷1235上游,下游,三台机导叶全开1236上游,下游2199.6,三台机导叶全开1237上游,下游2198.7,三台机导叶全开1238上游,下游,三台机导叶全开123注:模型导叶开度基值为27表6.7 各种初始工况时,三台机同时事故甩全负荷过渡过程计算结果序号起始工况关闭规律最大转速Hz最大转速升高蜗壳进口最大水压力mH

12、2O蜗壳末端最大水压力mH2O蜗壳末端最大水压力升高尾水管进口最低水压力 mH2O机 组 号115-10-0.5123225-10-0.51623335-10-0.5123445-10-0.5123555-10-0.5123665-10-0.5123775-10-0.5123885-10-0.5123机组调节保证计算时有压输水系统的糙率一般取平均值,从表6.7可见,机组最大转速升高、蜗壳末端最大水压力和尾水管进口最大真空度均未超过调节保证计算允许值;机组最大转速升高发生在工况5,即上游水位为正常蓄水位,机组导叶全开,三台机同时事故甩全负荷工况;蜗壳末端最大水压力发生在工况6,即上游水位为校核洪

13、水位,机组导叶全开,三台机同时事故甩全负荷工况;尾水管进口最大真空度一般发生在工况5。各机组的动参数极值见表6.8。表6.8 各机组的动态参数极值序号机组号关闭规律机组最大转速升高蜗壳末端最大水压力mH2O尾水管进口最低水压力mH2O115-10-0.5225-10-0.5335-10-0.5由表6.8可见,机组最大转速升高、蜗壳最大动态水压力和尾水管进口最低水压力均未超过调节保证允许值。三台机组工作,部分机组事故甩负荷过渡过程计算三台 表6.9 三台机工作,部分机组事故甩全负荷过渡过程计算结果序号起始工况关闭 规律最大 转速Hz最大转速升高蜗壳进口最大水压力mH2O蜗壳末端最大水压力mH2O

14、蜗壳末端最大水压力升高尾水管进口最低水压力 mH2O机 组 号115-10-0.51225-10-0.50.108113325-10-0.51245-10-0.513545-10-0.51265-10-0.513755-10-0.51285-10-0.513985-10-0.512105-10-0.5131115-10-0.51125-10-0.531325-10-0.51145-10-0.531545-10-0.51165-10-0.531755-10-0.51185-10-0.531985-10-0.51205-10-0.53注:表中1-10项为两台机同时事故甩全负荷,11-20项为一台机

15、事故甩全负荷由表6.9可见,在三台机工作,部分机组事故甩全负荷时,机组最大转速升高、涡壳最大水压力和尾水管进口真空度均能满足调节保证计算要求。3.5 部分机组工作,同时事故甩负荷过渡过程计算两台机工作,同时事故甩全负荷过渡过程计算结果见表6.11,初始工况见表6.10。表6.10 两台机工作初始工况序号工况起始转速r/min起始导叶开度起始水头m起始流量m3/s起始功率MW机 组 号1上游,下游,两台机带额定负荷122上游,下游,两台机带额定负荷123上游,下游,两台机带额定负荷124上游,下游,两台机带最大负荷125上游,下游2199.6,两台机导叶全开126上游,下游,两台机导叶全开127

16、上游,下游,两台机带额定负荷138上游,下游,两台机带额定负荷139上游,下游,两台机带额定负荷1310上游,下游,两台机带最大负荷1311上游,下游2199.6,两台机带最大负荷1312上游,下游,两台机带最大负荷13注:模型导叶开度基值为27表6.11 两台机工作,同时事故甩全负荷过渡过程计算结果序号起始工况关闭规律最大转速Hz最大转速升高蜗壳进口最大水压力mH2O蜗壳末端最大水压力mH2O蜗壳末端最大水压力升高尾水管进口最低水压力 mH2O机组号115-10-0.512225-10-0.515642335-10-0.512445-10-0.512555-10-0.512665-10-0.

17、512775-10-0.513885-10-0.513995-10-0.51310105-10-0.51311115-10-0.51312125-10-0.5113一台机工作,事故甩全负荷过渡过程计算结果见表6.13,相应初始工况见表6.12。表6.12 一台机工作初始工况序号工况起始转速r/min起始导叶开度起始水头m起始流量m3/s起始功率MW机组号1上游,下游,一台机带额定负荷12上游,下游,一台机带额定负荷213上游,下游,一台机带额定负荷14上游,下游,一台机带最大负荷15上游,下游2199.6,一台机带最大负荷16上游,下游,一台机带最大负荷127.4217上游,下游,一台机带额定

18、负荷38上游,下游,一台机带额定负荷39上游,下游,一台机带额定负荷310上游,下游,一台机带最大负荷311上游,下游2199.6,一台机带最大负荷312上游,下游,一台机带最大负荷3注:模型导叶开度基值为27表6.13 一台机工作,事故甩全负荷过渡过程计算结果序号起始工况关闭规律最大转速Hz最大转速升高蜗壳进口最大水压力mH2O蜗壳末端最大水压力mH2O蜗壳末端最大水压力升高尾水管进口最低水压力 mH2O机组号115-10-0.51225-10-0.51335-10-0.51445-10-0.51555-10-0.51665-10-0.51775-10-0.53885-10-0.53995-

19、10-0.5310105-10-0.5311115-10-0.5312125-10-0.53由表6.11和6.13可见,在部分机组工作,同时事故甩全负荷后,机组最大转速升高、涡壳最大水压力和尾水管进口最大真空度均没有超过调节保证计算允许值。小波动和稳定性分析由于国内电网的普及和加强,水电站一般均与较大电网并列运行,此时电网频率稳定,调节系统相当于处于开环运行,一般不存在稳定性问题。但当由于某种原因(如事故)电站可能需要带少量孤网负荷运行,此时就存在一个稳定性问题,同样机组在空载并网前也存在一个稳定性问题。通常调节系统稳定性和动态特性分析采用两类方法,一类是求解非线性微分方程组,获得在一定扰动下

20、的动态过程,并据此判断该工况点在给定调速器参数条件下调节系统的稳定性和动态特性;另一类是求解近似的线性化微分方程,并获得稳定域,据此判断该工况点的稳定性。非线性系统就是大波动计算用的模型,它包括了水轮机特性,弹性水击、调速器限幅等明显的非线性。线性系统是从非线性系统推出,将有关非线性在特定工况点线性化。一般说,线性系统与非线性系统有一定差别,特别在某些条件下,差别比较明显。本报告同时采用求解非线性系统的方法和求解近似的线性化微分方程进行调节系统稳定性和动态特性的分析研究。在分析调节系统稳定性和动态特性时,必须设置调速系统数学模型,本报告采用有关水轮机调速系统技术条件规定的并联PID调节器和电液

21、随动系统,其主要参数为比例增益Kp、积分增益Ki和微分增益Kd。本报告采用在Kp、Ki和Kd空间中寻优的方法,如果能找到一组或若干组调速器参数组合,使系统是稳定的并有较好的动态过程,那么该系统是稳定的。如果找不到这样的调速器参数组合,那么该系统是不稳定的,或者是稳定的但动态特性达不到要求。同样如果存在一定范围的调节系统稳定域或者调压室断面面积大于需要的稳定断面面积,那么系统是稳定的,反之,系统是不稳定的。速器参数优化计算对下列工况进行了调速器参数优化计算,本报告中调速器优化计算采用遍历法。1上游水位2325.0m,三台机带孤网额定负荷,同时施加10%减负荷扰动 调节时间s kp ki kd调节

22、时间=6.080000 s最大转速偏差=0.049706 2)上游水位2325.0m,一台大机带孤网额定负荷,同时施加10%减负荷扰动 调节时间s kp ki kd调节时间=4.840000 s最大转速偏差=0.026570 上游水位2325.0m,一台小机带孤网额定负荷,同时施加10%减负荷扰动 调节时间s kp ki kd调节时间=5.440000 s最大转速偏差=0.020697 上游水位2325.0m,三台机带孤网最大负荷,同时施加10%减负荷扰动 调节时间s kp ki kd调节时间=17.540000 s最大转速偏差=0.066734 a)上游水位2325.0m,一台大机带孤网最大

23、负荷,同时施加10%减负荷扰动 调节时间s kp ki kd调节时间=5.220000 s最大转速偏差=0.030408 b)上游水位2325.0m,一台小机带孤网最大负荷,同时施加10%减负荷扰动 调节时间s kp ki kd调节时间=5.680000 s最大转速偏差=0.023791 c)上游水位2325.0m,一台大机空载,同时施加10%增频给扰动 调节时间s kp ki kd调节时间=5.060000 s最大转速偏差=0.024550 d)上游水位2325.0m,一台小机空载,同时施加10%增频给扰动 调节时间s kp ki kd调节时间=5.340000 s最大转速偏差=0.0202

24、25 由上述计算结果可见,在孤网运行时,在上列各种工况中,调节系统原则上是稳定的。在三台机带孤网大负荷时,稳定性较差,调节时间较长,在一台机带孤网额定负荷或最大负荷时,调节系统稳定性较好,调节时间较短。在调速器制造、安装和调试质量符合相应国标要求时,本电站调节系统在一台机孤网带负荷或空载时应能获得较好的动态特性。但计算时设定负荷自调整系数为零,若孤网中有较多的电热负荷,则仍然稳定性可能变差。应该说明,调节系统动态特性与许多因素有关,如水轮机内部水流情况,调速器的制造、安装和调试质量,系统负荷性质等。在实际机组投运时,应通过现场试验决定调速器参数,并在开始时应设置较稳定的参数。线性系统调速器参数

25、稳定域计算对6种不同工况进行线性系统调速器参数稳定域计算,结果见表7.1。表7.1 线性系统调速器参数稳定域计算序号工况稳定域情况附图号1上游2325m,三台机带孤网额定负荷较大2上游2325m,一台大机带孤网额定负荷大3上游2325m,一台小机带孤网额定负荷大4上游2325m,三台机带孤网最大负荷小5上游2325m,一台大机带孤网最大负荷大6上游2325m,一台小机带孤网最大负荷大在调速器参数稳定域图上,等Kd曲线将Kp-Ki平面分成两部分,在曲线左侧的区域为稳定域,在曲线的右侧为不稳定域。本电站三台机同时带孤网大负荷时,系统稳定域小;而一台机带孤网负荷稳定域较大。应该说明,稳定域只表明,当

26、调速器参数选在该范围内,调节系统的特征根具有负的实部,因此在理论上系统是稳定的。但若实部的绝对值太小,那么过渡过程的时间将很长,若虚部太大,过渡过程会有强烈的振荡,在工程上是不能用的。调速器参数稳定域是对线性系统绘制的,线性系统参数由软件自动从原始的非线性系统产生,对本电站计算结果与非线性系统计算结果相近。线性系统调压室断面稳定域计算对6种不同工况进行调压室面积稳定域计算,计算结果见表7.2。上游水位均为最低水位,糙率取最小值。表7.2 调压室面积稳定域计算结果序号工况稳定断面面积m2附图号1三台机同时带额定孤网负荷652一台大机带额定孤网负荷503一台小机带额定孤网负荷504三台机同时带孤网

27、最大负荷1155一台大机带孤网最大负荷606一台小机带孤网最大负荷50在调压室断面稳定域图上,等Kp线将S-Ki平面分成两部分,在曲线的左上部为稳定域,在曲线的右下部为不稳定域,当调压室实际面积大于曲线规定的面积,系统是稳定的。显然这个面积与调速器参数有关,若调压室面积很小,系统也有可能稳定,此时Ki应设的很小,调节系统的动态特性差。由图可见,等Kp线有一段比较平坦,若调压室面积大于这一段相应的面积,那么Ki可以在较大范围内选取,就可能使调节系统的动态特性较好,这一段相应的面积可称为稳定断面。本电站调压室竖井直径10m,面积2,与表7.2数据比较,除了三台机同时带孤网最大负荷(导叶全开)时,小

28、于需要的稳定断面,其它工况均大于所需的稳定断面。因此本电站在一台机带孤网负荷和空载时,调节系统均是稳定的。五、有压输水管道最高、最低测压管水位计算根据调压室涌浪计算结果,确定有压输水道最高、最低测压管水位计算的工况,计算结果见表8.1。表8.1 有压输水道最高、最低测压管水位计算结果节点编号节点名称节点高程m上游,下游,三台机同时事故甩最大负荷时,最高测压管水位m(糙率最小)上游,下游,两台机带最大负荷,1号机从空载增至导叶全开,在200s时,三台机同时事故甩全负荷,最高测压管水位m(糙率最小)上游2323m,下游,两台机带额定负荷,1号机从空载增至额定负荷,最低测压管水位m(糙率最大)上游2

29、323m,下游,三台机同时甩负荷,在480s时,1号机从空载增至最大负荷,最低测压管水位m(糙率最大)0进水口1进水口末2引水道中间3引水道中间4引水道中间5引水道中间6引水道中间7引水道中间8引水道中间9引水道中间10引水道中间11引水道中间12引水道中间13引水道中间14引水道中间15调压室16压力管下弯段后171号分岔182号分岔191号机蜗壳进口201号机蜗壳末端232号机蜗壳进口242号机蜗壳末端273号机蜗壳进口283号机蜗壳末端222O。六、小结1计算表明,对阻抗孔直径为,调压室阻抗孔下管道内的最高测压管水位超过调压室竖井最高涌浪水位,且最高测压管水位发生在导叶关闭过程中,该水压

30、力将传到有压引水道中。此现象通常称为“水击穿透”,此时有压引水道承受的最高水压力大于调压室最高涌浪水位。一般不允许发生“水击穿透”现象,因此应该加大阻抗孔直径。在阻抗孔直径为时,调压室阻抗孔下管道内最高测压管水位已经低于或接近调压室竖井最高涌浪水位,即不会发生“水击穿透”现象。将调压室阻抗孔直径设定为。计算均设定阻抗孔直径为。2在差动上室式调压室竖井直径为10m的条件下,在上游为最低水位,三台机同时事故甩额定负荷时,调压室竖井最低涌浪水位达,远远低于调压室底部高程0.8的孔向竖井补水,补水量不足导致竖井水位过分降低。如将竖井直径加到12m,则上游为,三台机同时事故甩额定负荷时,调压室竖井最低涌浪水位为,而调压室底部高程,因此有足够的安全余量。3对简单上室式调压室,在上游水位,三台机同时甩额定负荷后,调压室最低涌浪水位为,比差动上室式调压室的最低涌浪水位高出许多,这是因为上室的水能及时流入竖井,从而使竖井水位不会过低。但这里最低涌浪水位的控制工况是工况7,即上游,两台机带

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论